AnyV2V / i2vgen-xl /utils.py
vinesmsuic's picture
init
26853cd
raw
history blame
3.04 kB
import os
import random
import numpy as np
import torch
from torchvision.io import read_video
import torchvision.transforms as T
from pathlib import Path
from PIL import Image
from diffusers.utils import load_image
import glob
import logging
logger = logging.getLogger(__name__)
def seed_everything(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
random.seed(seed)
np.random.seed(seed)
def load_ddim_latents_at_t(t, ddim_latents_path):
ddim_latents_at_t_path = os.path.join(ddim_latents_path, f"ddim_latents_{t}.pt")
assert os.path.exists(ddim_latents_at_t_path), f"Missing latents at t {t} path {ddim_latents_at_t_path}"
ddim_latents_at_t = torch.load(ddim_latents_at_t_path)
logger.debug(f"Loaded ddim_latents_at_t from {ddim_latents_at_t_path}")
return ddim_latents_at_t
def load_ddim_latents_at_T(ddim_latents_path):
noisest = max(
[int(x.split("_")[-1].split(".")[0]) for x in glob.glob(os.path.join(ddim_latents_path, f"ddim_latents_*.pt"))]
)
ddim_latents_at_T_path = os.path.join(ddim_latents_path, f"ddim_latents_{noisest}.pt")
ddim_latents_at_T = torch.load(ddim_latents_at_T_path) # [b, c, f, h, w] [1, 4, 16, 40, 64]
return ddim_latents_at_T
# Modified from tokenflow/utils.py
def convert_video_to_frames(video_path, img_size=(512, 512), save_frames=True):
video, _, _ = read_video(video_path, output_format="TCHW")
# rotate video -90 degree if video is .mov format. this is a weird bug in torchvision
if video_path.endswith(".mov"):
video = T.functional.rotate(video, -90)
if save_frames:
video_name = Path(video_path).stem
video_dir = Path(video_path).parent
os.makedirs(f"{video_dir}/{video_name}", exist_ok=True)
frames = []
for i in range(len(video)):
ind = str(i).zfill(5)
image = T.ToPILImage()(video[i])
logger.info(f"Original video frame size: {image.size}")
if image.size != img_size:
image_resized = image.resize(img_size, resample=Image.Resampling.LANCZOS)
logger.info(f"Resized video frame, height, width: {image_resized.size}, {img_size[1]}, {img_size[0]}")
else:
image_resized = image
if save_frames:
image_resized.save(f"{video_dir}/{video_name}/{ind}.png")
print(f"Saved frame {video_dir}/{video_name}/{ind}.png")
frames.append(image_resized)
return frames
# Modified from tokenflow/utils.py
def load_video_frames(frames_path, n_frames, image_size=(512, 512)):
# Load paths
paths = [f"{frames_path}/%05d.png" % i for i in range(n_frames)]
frames = [load_image(p) for p in paths]
# Check if the frames are the right size
for f in frames:
if f.size != image_size:
logger.error(f"Frame size {f.size} does not match config.image_size {image_size}")
raise ValueError(f"Frame size {f.size} does not match config.image_size {image_size}")
return paths, frames