|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Llava model configuration""" |
|
|
|
|
|
|
|
|
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
from transformers.utils import logging |
|
from transformers.models.auto import CONFIG_MAPPING |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
LLAVA_PRETRAINED_CONFIG_ARCHIVE_MAP = { |
|
"llava-hf/llava-v1.5-7b": "https://huggingface.co/llava-hf/llava-v1.5-7b/resolve/main/config.json", |
|
} |
|
|
|
|
|
class LlavaConfig(PretrainedConfig): |
|
r""" |
|
This is the configuration class to store the configuration of a [`LlavaForConditionalGeneration`]. It is used to instantiate an |
|
Llava model according to the specified arguments, defining the model architecture. Instantiating a configuration |
|
with the defaults will yield a similar configuration to that of the Llava-9B. |
|
|
|
e.g. [llava-hf/llava-9b](https://huggingface.co/llava-hf/llava-9b) |
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
Args: |
|
vision_config (`LlavaVisionConfig`, *optional*): |
|
Custom vision config or dict |
|
text_config (`Union[AutoConfig, dict]`, *optional*): |
|
The config object of the text backbone. Can be any of `LlamaConfig` or `MistralConfig`. |
|
ignore_index (`int`, *optional*, defaults to -100): |
|
The ignore index for the loss function. |
|
image_token_index (`int`, *optional*, defaults to 32000): |
|
The image token index to encode the image prompt. |
|
projector_hidden_act (`str`, *optional*, defaults to `"gelu"`): |
|
The activation function used by the multimodal projector. |
|
vision_feature_select_strategy (`str`, *optional*, defaults to `"default"`): |
|
The feature selection strategy used to select the vision feature from the CLIP backbone. |
|
vision_feature_layer (`int`, *optional*, defaults to -2): |
|
The index of the layer to select the vision feature. |
|
vocab_size (`int`, *optional*, defaults to 32000): |
|
Vocabulary size of the Llava model. Defines the number of different tokens that can be represented by the |
|
`inputs_ids` passed when calling [`~LlavaForConditionalGeneration`] |
|
|
|
Example: |
|
|
|
```python |
|
>>> from transformers import LlavaForConditionalGeneration, LlavaConfig, CLIPVisionConfig, LlamaConfig |
|
|
|
>>> # Initializing a CLIP-vision config |
|
>>> vision_config = CLIPVisionConfig() |
|
|
|
>>> # Initializing a Llama config |
|
>>> text_config = LlamaConfig() |
|
|
|
>>> # Initializing a Llava llava-1.5-7b style configuration |
|
>>> configuration = LlavaConfig(vision_config, text_config) |
|
|
|
>>> # Initializing a model from the llava-1.5-7b style configuration |
|
>>> model = LlavaForConditionalGeneration(configuration) |
|
|
|
>>> # Accessing the model configuration |
|
>>> configuration = model.config |
|
```""" |
|
|
|
model_type = "llava" |
|
is_composition = False |
|
|
|
def __init__( |
|
self, |
|
vision_config=None, |
|
text_config=None, |
|
ignore_index=-100, |
|
image_token_index=32000, |
|
projector_hidden_act="gelu", |
|
vision_feature_select_strategy="default", |
|
vision_feature_layer=-2, |
|
vocab_size=32000, |
|
**kwargs, |
|
): |
|
self.ignore_index = ignore_index |
|
self.image_token_index = image_token_index |
|
self.projector_hidden_act = projector_hidden_act |
|
self.vision_feature_select_strategy = vision_feature_select_strategy |
|
self.vision_feature_layer = vision_feature_layer |
|
self.vocab_size = vocab_size |
|
|
|
self.vision_config = vision_config |
|
|
|
if isinstance(self.vision_config, dict): |
|
vision_config["model_type"] = ( |
|
vision_config["model_type"] if "model_type" in vision_config else "clip_vision_model" |
|
) |
|
self.vision_config = CONFIG_MAPPING[vision_config["model_type"]](**vision_config) |
|
elif vision_config is None: |
|
self.vision_config = CONFIG_MAPPING["clip_vision_model"]( |
|
intermediate_size=4096, |
|
hidden_size=1024, |
|
patch_size=14, |
|
image_size=336, |
|
num_hidden_layers=24, |
|
num_attention_heads=16, |
|
vocab_size=32000, |
|
projection_dim=768, |
|
) |
|
self.vocab_size = self.vocab_size |
|
|
|
self.text_config = text_config |
|
|
|
if isinstance(self.text_config, dict): |
|
text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "llama" |
|
self.text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config) |
|
self.vocab_size = self.text_config.vocab_size |
|
elif text_config is None: |
|
self.text_config = CONFIG_MAPPING["llama"]() |
|
|
|
super().__init__(**kwargs) |
|
|