|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" |
|
Processor class for Llava. |
|
""" |
|
|
|
import os |
|
import json |
|
from typing import List, Optional, Union, Dict |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from transformers.feature_extraction_sequence_utils import BatchFeature |
|
from transformers.image_utils import ImageInput |
|
from transformers.processing_utils import ProcessorMixin |
|
from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy |
|
from transformers.utils import TensorType |
|
from transformers.processing_utils import transformers_module |
|
from transformers.utils.hub import is_remote_url, download_url, cached_file, is_offline_mode |
|
from transformers.utils import IMAGE_PROCESSOR_NAME |
|
|
|
from PIL import Image |
|
import logging |
|
import torch |
|
import numpy as np |
|
logger = logging.getLogger(__name__) |
|
|
|
class MLlavaProcessor(ProcessorMixin): |
|
r""" |
|
Constructs a Llava processor which wraps a Llava image processor and a Llava tokenizer into a single processor. |
|
|
|
[`LlavaProcessor`] offers all the functionalities of [`CLIPImageProcessor`] and [`LlamaTokenizerFast`]. See the |
|
[`~LlavaProcessor.__call__`] and [`~LlavaProcessor.decode`] for more information. |
|
|
|
Args: |
|
image_processor ([`CLIPImageProcessor`], *optional*): |
|
The image processor is a required input. |
|
tokenizer ([`LlamaTokenizerFast`], *optional*): |
|
The tokenizer is a required input. |
|
""" |
|
|
|
attributes = ["image_processor", "tokenizer"] |
|
image_processor_class = ("CLIPImageProcessor", "SiglipImageProcessor") |
|
tokenizer_class = ("LlamaTokenizer", "LlamaTokenizerFast", "PreTrainedTokenizerFast") |
|
|
|
def __init__(self, image_processor=None, tokenizer=None): |
|
super().__init__(image_processor, tokenizer) |
|
|
|
def preprocess_interleaved_images_and_text( |
|
self, |
|
text, |
|
images=None, |
|
): |
|
""" |
|
Args: |
|
text (`str`, `List[str]`): |
|
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings |
|
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set |
|
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences). |
|
text can contain <image> tokens as the placeholder for the image(s) to be inserted. |
|
images (`PIL.Image.Image`, `List[PIL.Image.Image]`, `List[List[PIL.Image.Image]]`): |
|
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch |
|
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a |
|
number of channels, H and W are image height and width. |
|
the number of the images should match the number of <image> tokens in the text. |
|
|
|
""" |
|
assert text is not None, "text cannot be None." |
|
|
|
if images is not None: |
|
if isinstance(images, Image.Image): |
|
images = [images] |
|
if isinstance(images, list) and isinstance(images[0], Image.Image): |
|
if isinstance(text, str): |
|
images = [images] |
|
elif isinstance(text, list): |
|
if len(text) != len(images): |
|
raise ValueError("Invalid input text. Number of texts does not match number of images.") |
|
images = [[image] for image in images] |
|
if isinstance(text, str): |
|
num_images = len(images[0]) |
|
num_image_tokens = text.count("<image>") |
|
if num_image_tokens < num_images: |
|
|
|
if "USER:" in text: |
|
text = text.replace("USER:", "USER:" + "<image>" * (num_images - num_image_tokens), 1) |
|
elif "Human:" in text: |
|
text = text.replace("Human:", "Human:" + "<image>" * (num_images - num_image_tokens), 1) |
|
elif "HUMAN:" in text: |
|
text = text.replace("HUMAN:", "HUMAN:" + "<image>" * (num_images - num_image_tokens), 1) |
|
else: |
|
text = "<image>" * (num_images - num_image_tokens) + text |
|
|
|
elif num_image_tokens > num_images: |
|
text = text.split("<image>") |
|
for i, t in enumerate(text): |
|
if i < num_images: |
|
text[i] = t + "<image>" |
|
text = "".join(text) |
|
logger.warning(f"Number of <image> tokens: {num_image_tokens} exceeds number of images: {num_images}. Automatically removing extra tokens at the end of the text.") |
|
|
|
texts = [text] |
|
elif isinstance(text, list): |
|
if not isinstance(text[0], str): |
|
raise ValueError("Invalid input text. Each element of text must be a string.") |
|
for i, t in enumerate(text): |
|
num_image_tokens = t.count("<image>") |
|
num_images = len(images[i]) |
|
if num_image_tokens < num_images: |
|
|
|
if "USER:" in t: |
|
t = t.replace("USER:", "USER:" + "<image>" * (num_images - num_image_tokens), 1) |
|
elif "Human:" in t: |
|
t = t.replace("Human:", "Human:" + "<image>" * (num_images - num_image_tokens), 1) |
|
elif "HUMAN:" in t: |
|
t = t.replace("HUMAN:", "HUMAN:" + "<image>" * (num_images - num_image_tokens), 1) |
|
else: |
|
t = "<image>" * (num_images - num_image_tokens) + t |
|
|
|
elif num_image_tokens > num_images: |
|
t = t.split("<image>") |
|
for j, s in enumerate(t): |
|
if j < num_images: |
|
t[j] = s + "<image>" |
|
t = "".join(t) |
|
logger.warning(f"Number of <image> tokens: {num_image_tokens} exceeds number of images: {num_images}. Automatically removing extra tokens at the end of the text.") |
|
|
|
text[i] = t |
|
texts = text |
|
else: |
|
raise ValueError("Invalid input text. text must be a string or a list of strings.") |
|
assert all([t.count("<image>") == len(images_per_text) for t, images_per_text in zip(texts, images)]), "Number of <image> tokens in text does not match number of images." |
|
|
|
for i, t in enumerate(texts): |
|
for j in range(len(images[i])): |
|
t = t.replace("<image>", f"(image {j+1}: <Image><IMAGE></Image>)", 1) |
|
t = t.replace("<IMAGE>", "<image>") |
|
texts[i] = t |
|
|
|
|
|
images = [image for images_per_text in images for image in images_per_text] |
|
else: |
|
if isinstance(text, str): |
|
texts = [text] |
|
elif isinstance(text, list): |
|
if not isinstance(text[0], str): |
|
raise ValueError("Invalid input text. Each element of text must be a string.") |
|
texts = text |
|
else: |
|
raise ValueError("Invalid input text. text must be a string or a list of strings.") |
|
|
|
return texts, images |
|
|
|
def __call__( |
|
self, |
|
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, |
|
images: ImageInput = None, |
|
padding: Union[bool, str, PaddingStrategy] = False, |
|
truncation: Union[bool, str, TruncationStrategy] = None, |
|
max_length=None, |
|
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, |
|
add_image_ids: bool = True, |
|
) -> BatchFeature: |
|
""" |
|
Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` |
|
and `kwargs` arguments to LlamaTokenizerFast's [`~LlamaTokenizerFast.__call__`] if `text` is not `None` to encode |
|
the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to |
|
CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring |
|
of the above two methods for more information. |
|
|
|
Args: |
|
text (`str`, `List[str]`, `List[List[str]]`): |
|
The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings |
|
(pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set |
|
`is_split_into_words=True` (to lift the ambiguity with a batch of sequences). |
|
images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): |
|
The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch |
|
tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a |
|
number of channels, H and W are image height and width. |
|
padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): |
|
Select a strategy to pad the returned sequences (according to the model's padding side and padding |
|
index) among: |
|
- `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single |
|
sequence if provided). |
|
- `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum |
|
acceptable input length for the model if that argument is not provided. |
|
- `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different |
|
lengths). |
|
max_length (`int`, *optional*): |
|
Maximum length of the returned list and optionally padding length (see above). |
|
truncation (`bool`, *optional*): |
|
Activates truncation to cut input sequences longer than `max_length` to `max_length`. |
|
return_tensors (`str` or [`~utils.TensorType`], *optional*): |
|
If set, will return tensors of a particular framework. Acceptable values are: |
|
|
|
- `'tf'`: Return TensorFlow `tf.constant` objects. |
|
- `'pt'`: Return PyTorch `torch.Tensor` objects. |
|
- `'np'`: Return NumPy `np.ndarray` objects. |
|
- `'jax'`: Return JAX `jnp.ndarray` objects. |
|
|
|
Returns: |
|
[`BatchFeature`]: A [`BatchFeature`] with the following fields: |
|
|
|
- **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. |
|
- **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when |
|
`return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not |
|
`None`). |
|
- **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. |
|
""" |
|
if add_image_ids: |
|
text, images = self.preprocess_interleaved_images_and_text(text, images) |
|
if images is not None: |
|
pixel_values = self.image_processor(images, return_tensors=return_tensors)["pixel_values"] |
|
else: |
|
pixel_values = None |
|
text_inputs = self.tokenizer( |
|
text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length |
|
) |
|
|
|
|
|
|
|
|
|
return BatchFeature(data={**text_inputs, "pixel_values": pixel_values}) |
|
|
|
|
|
def batch_decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please |
|
refer to the docstring of this method for more information. |
|
""" |
|
return self.tokenizer.batch_decode(*args, **kwargs) |
|
|
|
|
|
def decode(self, *args, **kwargs): |
|
""" |
|
This method forwards all its arguments to LlamaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to |
|
the docstring of this method for more information. |
|
""" |
|
return self.tokenizer.decode(*args, **kwargs) |
|
|
|
@property |
|
|
|
def model_input_names(self): |
|
tokenizer_input_names = self.tokenizer.model_input_names |
|
image_processor_input_names = self.image_processor.model_input_names |
|
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) |
|
|
|
def _right_pad_inputs_with_attention_mask(self, model_inputs: List[Dict]): |
|
results = {} |
|
assert len(model_inputs) == 1, "This method only supports a single input, but get {} inputs".format(len(model_inputs)) |
|
for k in model_inputs[0].keys(): |
|
if k == "pixel_values": |
|
results[k] = [inputs[k] if inputs[k] is not None else None for inputs in model_inputs] |
|
else: |
|
results[k] = torch.cat([inputs[k] for inputs in model_inputs], dim=0) |
|
return results |
|
|
|
@classmethod |
|
def _get_arguments_from_pretrained(cls, pretrained_model_name_or_path, **kwargs): |
|
args = [] |
|
|
|
cache_dir = kwargs.pop("cache_dir", None) |
|
force_download = kwargs.pop("force_download", False) |
|
resume_download = kwargs.pop("resume_download", False) |
|
proxies = kwargs.pop("proxies", None) |
|
token = kwargs.pop("token", None) |
|
local_files_only = kwargs.pop("local_files_only", False) |
|
revision = kwargs.pop("revision", None) |
|
subfolder = kwargs.pop("subfolder", "") |
|
|
|
from_pipeline = kwargs.pop("_from_pipeline", None) |
|
from_auto_class = kwargs.pop("_from_auto", False) |
|
|
|
user_agent = {"file_type": "processor", "from_auto_class": from_auto_class} |
|
if from_pipeline is not None: |
|
user_agent["using_pipeline"] = from_pipeline |
|
|
|
if is_offline_mode() and not local_files_only: |
|
logger.info("Offline mode: forcing local_files_only=True") |
|
local_files_only = True |
|
|
|
pretrained_model_name_or_path = str(pretrained_model_name_or_path) |
|
is_local = os.path.isdir(pretrained_model_name_or_path) |
|
if os.path.isdir(pretrained_model_name_or_path): |
|
processor_file = os.path.join(pretrained_model_name_or_path, IMAGE_PROCESSOR_NAME) |
|
if os.path.isfile(pretrained_model_name_or_path): |
|
resolved_processor_file = pretrained_model_name_or_path |
|
is_local = True |
|
elif is_remote_url(pretrained_model_name_or_path): |
|
processor_file = pretrained_model_name_or_path |
|
resolved_processor_file = download_url(pretrained_model_name_or_path) |
|
else: |
|
processor_file = IMAGE_PROCESSOR_NAME |
|
try: |
|
|
|
resolved_processor_file = cached_file( |
|
pretrained_model_name_or_path, |
|
processor_file, |
|
cache_dir=cache_dir, |
|
force_download=force_download, |
|
proxies=proxies, |
|
resume_download=resume_download, |
|
local_files_only=local_files_only, |
|
token=token, |
|
user_agent=user_agent, |
|
revision=revision, |
|
subfolder=subfolder, |
|
_raise_exceptions_for_missing_entries=True, |
|
) |
|
except EnvironmentError: |
|
|
|
|
|
raise |
|
except Exception: |
|
|
|
raise EnvironmentError( |
|
f"Can't load processor for '{pretrained_model_name_or_path}'. If you were trying to load" |
|
" it from 'https://huggingface.co/models', make sure you don't have a local directory with the" |
|
f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a" |
|
f" directory containing a {IMAGE_PROCESSOR_NAME} file" |
|
) |
|
|
|
|
|
|
|
|
|
|
|
if resolved_processor_file is None: |
|
image_processor_dict = {} |
|
|
|
try: |
|
|
|
with open(resolved_processor_file, "r", encoding="utf-8") as reader: |
|
text = reader.read() |
|
image_processor_dict = json.loads(text) |
|
|
|
except json.JSONDecodeError: |
|
raise EnvironmentError( |
|
f"It looks like the config file at '{resolved_processor_file}' is not a valid JSON file." |
|
) |
|
|
|
for attribute_name in cls.attributes: |
|
class_name = getattr(cls, f"{attribute_name}_class") |
|
if isinstance(class_name, tuple): |
|
if attribute_name == "tokenizer": |
|
classes = tuple(getattr(transformers_module, n) if n is not None else None for n in class_name) |
|
use_fast = kwargs.get("use_fast", True) |
|
if use_fast and classes[1] is not None: |
|
attribute_class = classes[1] |
|
else: |
|
attribute_class = classes[0] |
|
elif attribute_name == "image_processor": |
|
image_processor_type = image_processor_dict.get("image_processor_type", None) |
|
if image_processor_type is not None: |
|
assert image_processor_type in class_name, f"Invalid image processor type: {image_processor_type}" |
|
attribute_class = getattr(transformers_module, image_processor_type) |
|
else: |
|
attribute_class = getattr(transformers_module, class_name[0]) |
|
else: |
|
raise ValueError(f"Invalid attribute name: {attribute_name}") |
|
else: |
|
attribute_class = getattr(transformers_module, class_name) |
|
|
|
args.append(attribute_class.from_pretrained(pretrained_model_name_or_path, **kwargs)) |
|
return args |
|
|