|
import PIL |
|
import torch |
|
from .modeling_llava import LlavaForConditionalGeneration |
|
from .processing_llava import MLlavaProcessor |
|
|
|
from ..conversation import conv_mllava_v1 as default_conv, conv_templates |
|
|
|
from typing import List, Tuple, Union, Tuple |
|
|
|
def chat_mllava( |
|
text:str, |
|
images: List[Union[PIL.Image.Image, str]], |
|
model:LlavaForConditionalGeneration, |
|
processor:MLlavaProcessor, |
|
max_input_length:int=None, |
|
history:List[dict]=None, |
|
**kwargs) -> Tuple[str, List[dict]]: |
|
""" |
|
Chat with the Mllava model |
|
Args: |
|
text: str, the text to be sent to the model, where <image> will be the placeholder for the image |
|
images: List[PIL.Image.Image], the images to be sent to the model, or None |
|
model: LlavaForConditionalGeneration, the model to be used |
|
processor: MLlavaProcessor, the processor to be used |
|
max_input_length: int, the maximum input length |
|
history: List[dict], list of messages in the conversation as history. Each message is a dictionary {"role": "ASSISTANT/USER", "text": "the message"}. If None, the conversation will start from scratch |
|
kwargs: dict, the generation kwargs |
|
Returns: |
|
Tuple[str, List[dict]], the generated text and the history of the conversation |
|
|
|
|
|
""" |
|
if "llama-3" in model.language_model.name_or_path.lower(): |
|
conv = conv_templates['llama_3'] |
|
terminators = [ |
|
processor.tokenizer.eos_token_id, |
|
processor.tokenizer.convert_tokens_to_ids("<|eot_id|>") |
|
] |
|
else: |
|
conv = default_conv |
|
terminators = None |
|
kwargs["eos_token_id"] = terminators |
|
conv = conv.copy() |
|
conv.messages = [] |
|
if history is not None: |
|
for message in history: |
|
assert message["role"] in conv.roles |
|
conv.append_message(message["role"], message["text"]) |
|
if text: |
|
assert conv.messages[-1][0] == conv.roles[1], "The last message in the history should be the assistant, if the given text is not empty" |
|
conv.append_message(conv.roles[0], text) |
|
conv.append_message(conv.roles[1], "") |
|
history.append({"role": conv.roles[0], "text": text}) |
|
history.append({"role": conv.roles[1], "text": ""}) |
|
else: |
|
if conv.messages[-1][0] == conv.roles[1]: |
|
assert conv.messages[-1][1] == "", "No user message should be provided" |
|
else: |
|
assert conv.messages[-1][0] == conv.roles[0], "The last message in the history should be the user, if the given text is empty" |
|
conv.append_message(conv.roles[0], "") |
|
history.append({"role": conv.roles[0], "text": ""}) |
|
else: |
|
history = [] |
|
history.append({"role": conv.roles[0], "text": text}) |
|
history.append({"role": conv.roles[1], "text": ""}) |
|
conv.append_message(conv.roles[0], text) |
|
conv.append_message(conv.roles[1], "") |
|
assert conv.messages[-1][0] == conv.roles[1] and conv.messages[-1][1] == "", "Format check" |
|
assert history[-1]["role"] == conv.roles[1] and history[-1]["text"] == "", "Format check" |
|
|
|
prompt = conv.get_prompt() |
|
if images: |
|
for i in range(len(images)): |
|
if isinstance(images[i], str): |
|
images[i] = PIL.Image.open(images[i]).convert("RGB") |
|
|
|
inputs = processor(images=images, text=prompt, return_tensors="pt", truncation=True, max_length=max_input_length) |
|
for k, v in inputs.items(): |
|
if v is not None: |
|
if isinstance(v, torch.Tensor): |
|
inputs[k] = v.to(model.device) |
|
elif isinstance(v, list): |
|
inputs[k] = [x.to(model.device) for x in v] |
|
else: |
|
raise ValueError(f"Invalid input type: {type(v)}") |
|
|
|
|
|
output_ids = model.generate(**inputs, **kwargs) |
|
output_ids = output_ids[0] |
|
|
|
|
|
generated_ids = output_ids[inputs["input_ids"].shape[-1]:] |
|
generated_text = processor.decode(generated_ids, skip_special_tokens=True) |
|
|
|
history[-1]["text"] = generated_text |
|
|
|
return generated_text, history |
|
|
|
|
|
def chat_mllava_stream( |
|
text:str, |
|
images: List[Union[PIL.Image.Image, str]], |
|
model:LlavaForConditionalGeneration, |
|
processor:MLlavaProcessor, |
|
max_input_length:int=None, |
|
history:List[dict]=None, |
|
**kwargs) -> Tuple[str, List[dict]]: |
|
""" |
|
Chat with the Mllava model |
|
Args: |
|
text: str, the text to be sent to the model, where <image> will be the placeholder for the image |
|
images: List[PIL.Image.Image], the images to be sent to the model, or None |
|
model: LlavaForConditionalGeneration, the model to be used |
|
processor: MLlavaProcessor, the processor to be used |
|
max_input_length: int, the maximum input length |
|
history: List[dict], list of messages in the conversation as history. Each message is a dictionary {"role": "ASSISTANT/USER", "text": "the message"}. If None, the conversation will start from scratch |
|
kwargs: dict, the generation kwargs |
|
Returns: |
|
Tuple[str, List[dict]], the generated text and the history of the conversation |
|
|
|
|
|
""" |
|
if "llama-3" in model.language_model.name_or_path.lower(): |
|
conv = conv_templates['llama_3'] |
|
terminators = [ |
|
processor.tokenizer.eos_token_id, |
|
processor.tokenizer.convert_tokens_to_ids("<|eot_id|>") |
|
] |
|
else: |
|
conv = default_conv |
|
terminators = None |
|
kwargs["eos_token_id"] = terminators |
|
conv = conv.copy() |
|
conv.messages = [] |
|
if history is not None: |
|
for message in history: |
|
assert message["role"] in conv.roles |
|
conv.append_message(message["role"], message["text"]) |
|
if text: |
|
assert conv.messages[-1][0] == conv.roles[1], "The last message in the history should be the assistant, if the given text is not empty" |
|
conv.append_message(conv.roles[0], text) |
|
conv.append_message(conv.roles[1], "") |
|
history.append({"role": conv.roles[0], "text": text}) |
|
history.append({"role": conv.roles[1], "text": ""}) |
|
else: |
|
if conv.messages[-1][0] == conv.roles[1]: |
|
assert conv.messages[-1][1] == "", "No user message should be provided" |
|
else: |
|
assert conv.messages[-1][0] == conv.roles[0], "The last message in the history should be the user, if the given text is empty" |
|
conv.append_message(conv.roles[0], "") |
|
history.append({"role": conv.roles[0], "text": ""}) |
|
else: |
|
history = [] |
|
history.append({"role": conv.roles[0], "text": text}) |
|
history.append({"role": conv.roles[1], "text": ""}) |
|
conv.append_message(conv.roles[0], text) |
|
conv.append_message(conv.roles[1], "") |
|
assert conv.messages[-1][0] == conv.roles[1] and conv.messages[-1][1] == "", "Format check" |
|
assert history[-1]["role"] == conv.roles[1] and history[-1]["text"] == "", "Format check" |
|
|
|
prompt = conv.get_prompt() |
|
if images: |
|
for i in range(len(images)): |
|
if isinstance(images[i], str): |
|
images[i] = PIL.Image.open(images[i]) |
|
images[i] = images[i].convert("RGB") |
|
|
|
inputs = processor(images=images, text=prompt, return_tensors="pt", truncation=True, max_length=max_input_length) |
|
print(processor.tokenizer.decode(inputs["input_ids"][0])) |
|
for k, v in inputs.items(): |
|
if v is not None: |
|
if isinstance(v, torch.Tensor): |
|
inputs[k] = v.to(model.device) |
|
elif isinstance(v, list): |
|
inputs[k] = [x.to(model.device) for x in v] |
|
else: |
|
raise ValueError(f"Invalid input type: {type(v)}") |
|
|
|
from transformers import TextIteratorStreamer |
|
from threading import Thread |
|
streamer = TextIteratorStreamer(processor, skip_prompt=True, skip_special_tokens=True) |
|
kwargs["streamer"] = streamer |
|
inputs.update(kwargs) |
|
thread = Thread(target=model.generate, kwargs=inputs) |
|
thread.start() |
|
for _output in streamer: |
|
history[-1]["text"] += _output |
|
yield history[-1]["text"], history |