Spaces:
Running
on
Zero
Running
on
Zero
"""shout-out to https://github.com/lucidrains/x-transformers/tree/main/x_transformers""" | |
from functools import partial | |
from inspect import isfunction | |
from collections import namedtuple | |
from einops import rearrange, repeat | |
import torch | |
from torch import nn, einsum | |
import torch.nn.functional as F | |
# constants | |
DEFAULT_DIM_HEAD = 64 | |
Intermediates = namedtuple("Intermediates", ["pre_softmax_attn", "post_softmax_attn"]) | |
LayerIntermediates = namedtuple("Intermediates", ["hiddens", "attn_intermediates"]) | |
class AbsolutePositionalEmbedding(nn.Module): | |
def __init__(self, dim, max_seq_len): | |
super().__init__() | |
self.emb = nn.Embedding(max_seq_len, dim) | |
self.init_() | |
def init_(self): | |
nn.init.normal_(self.emb.weight, std=0.02) | |
def forward(self, x): | |
n = torch.arange(x.shape[1], device=x.device) | |
return self.emb(n)[None, :, :] | |
class FixedPositionalEmbedding(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2).float() / dim)) | |
self.register_buffer("inv_freq", inv_freq) | |
def forward(self, x, seq_dim=1, offset=0): | |
t = ( | |
torch.arange(x.shape[seq_dim], device=x.device).type_as(self.inv_freq) | |
+ offset | |
) | |
sinusoid_inp = torch.einsum("i , j -> i j", t, self.inv_freq) | |
emb = torch.cat((sinusoid_inp.sin(), sinusoid_inp.cos()), dim=-1) | |
return emb[None, :, :] | |
# helpers | |
def exists(val): | |
return val is not None | |
def default(val, d): | |
if exists(val): | |
return val | |
return d() if isfunction(d) else d | |
def always(val): | |
def inner(*args, **kwargs): | |
return val | |
return inner | |
def not_equals(val): | |
def inner(x): | |
return x != val | |
return inner | |
def equals(val): | |
def inner(x): | |
return x == val | |
return inner | |
def max_neg_value(tensor): | |
return -torch.finfo(tensor.dtype).max | |
# keyword argument helpers | |
def pick_and_pop(keys, d): | |
values = list(map(lambda key: d.pop(key), keys)) | |
return dict(zip(keys, values)) | |
def group_dict_by_key(cond, d): | |
return_val = [dict(), dict()] | |
for key in d.keys(): | |
match = bool(cond(key)) | |
ind = int(not match) | |
return_val[ind][key] = d[key] | |
return (*return_val,) | |
def string_begins_with(prefix, str): | |
return str.startswith(prefix) | |
def group_by_key_prefix(prefix, d): | |
return group_dict_by_key(partial(string_begins_with, prefix), d) | |
def groupby_prefix_and_trim(prefix, d): | |
kwargs_with_prefix, kwargs = group_dict_by_key( | |
partial(string_begins_with, prefix), d | |
) | |
kwargs_without_prefix = dict( | |
map(lambda x: (x[0][len(prefix) :], x[1]), tuple(kwargs_with_prefix.items())) | |
) | |
return kwargs_without_prefix, kwargs | |
# classes | |
class Scale(nn.Module): | |
def __init__(self, value, fn): | |
super().__init__() | |
self.value = value | |
self.fn = fn | |
def forward(self, x, **kwargs): | |
x, *rest = self.fn(x, **kwargs) | |
return (x * self.value, *rest) | |
class Rezero(nn.Module): | |
def __init__(self, fn): | |
super().__init__() | |
self.fn = fn | |
self.g = nn.Parameter(torch.zeros(1)) | |
def forward(self, x, **kwargs): | |
x, *rest = self.fn(x, **kwargs) | |
return (x * self.g, *rest) | |
class ScaleNorm(nn.Module): | |
def __init__(self, dim, eps=1e-5): | |
super().__init__() | |
self.scale = dim**-0.5 | |
self.eps = eps | |
self.g = nn.Parameter(torch.ones(1)) | |
def forward(self, x): | |
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale | |
return x / norm.clamp(min=self.eps) * self.g | |
class RMSNorm(nn.Module): | |
def __init__(self, dim, eps=1e-8): | |
super().__init__() | |
self.scale = dim**-0.5 | |
self.eps = eps | |
self.g = nn.Parameter(torch.ones(dim)) | |
def forward(self, x): | |
norm = torch.norm(x, dim=-1, keepdim=True) * self.scale | |
return x / norm.clamp(min=self.eps) * self.g | |
class Residual(nn.Module): | |
def forward(self, x, residual): | |
return x + residual | |
class GRUGating(nn.Module): | |
def __init__(self, dim): | |
super().__init__() | |
self.gru = nn.GRUCell(dim, dim) | |
def forward(self, x, residual): | |
gated_output = self.gru( | |
rearrange(x, "b n d -> (b n) d"), rearrange(residual, "b n d -> (b n) d") | |
) | |
return gated_output.reshape_as(x) | |
# feedforward | |
class GEGLU(nn.Module): | |
def __init__(self, dim_in, dim_out): | |
super().__init__() | |
self.proj = nn.Linear(dim_in, dim_out * 2) | |
def forward(self, x): | |
x, gate = self.proj(x).chunk(2, dim=-1) | |
return x * F.gelu(gate) | |
class FeedForward(nn.Module): | |
def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0): | |
super().__init__() | |
inner_dim = int(dim * mult) | |
dim_out = default(dim_out, dim) | |
project_in = ( | |
nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) | |
if not glu | |
else GEGLU(dim, inner_dim) | |
) | |
self.net = nn.Sequential( | |
project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out) | |
) | |
def forward(self, x): | |
return self.net(x) | |
# attention. | |
class Attention(nn.Module): | |
def __init__( | |
self, | |
dim, | |
dim_head=DEFAULT_DIM_HEAD, | |
heads=8, | |
causal=False, | |
mask=None, | |
talking_heads=False, | |
sparse_topk=None, | |
use_entmax15=False, | |
num_mem_kv=0, | |
dropout=0.0, | |
on_attn=False, | |
): | |
super().__init__() | |
if use_entmax15: | |
raise NotImplementedError( | |
"Check out entmax activation instead of softmax activation!" | |
) | |
self.scale = dim_head**-0.5 | |
self.heads = heads | |
self.causal = causal | |
self.mask = mask | |
inner_dim = dim_head * heads | |
self.to_q = nn.Linear(dim, inner_dim, bias=False) | |
self.to_k = nn.Linear(dim, inner_dim, bias=False) | |
self.to_v = nn.Linear(dim, inner_dim, bias=False) | |
self.dropout = nn.Dropout(dropout) | |
# talking heads | |
self.talking_heads = talking_heads | |
if talking_heads: | |
self.pre_softmax_proj = nn.Parameter(torch.randn(heads, heads)) | |
self.post_softmax_proj = nn.Parameter(torch.randn(heads, heads)) | |
# explicit topk sparse attention | |
self.sparse_topk = sparse_topk | |
# entmax | |
# self.attn_fn = entmax15 if use_entmax15 else F.softmax | |
self.attn_fn = F.softmax | |
# add memory key / values | |
self.num_mem_kv = num_mem_kv | |
if num_mem_kv > 0: | |
self.mem_k = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) | |
self.mem_v = nn.Parameter(torch.randn(heads, num_mem_kv, dim_head)) | |
# attention on attention | |
self.attn_on_attn = on_attn | |
self.to_out = ( | |
nn.Sequential(nn.Linear(inner_dim, dim * 2), nn.GLU()) | |
if on_attn | |
else nn.Linear(inner_dim, dim) | |
) | |
def forward( | |
self, | |
x, | |
context=None, | |
mask=None, | |
context_mask=None, | |
rel_pos=None, | |
sinusoidal_emb=None, | |
prev_attn=None, | |
mem=None, | |
): | |
b, n, _, h, talking_heads, device = ( | |
*x.shape, | |
self.heads, | |
self.talking_heads, | |
x.device, | |
) | |
kv_input = default(context, x) | |
q_input = x | |
k_input = kv_input | |
v_input = kv_input | |
if exists(mem): | |
k_input = torch.cat((mem, k_input), dim=-2) | |
v_input = torch.cat((mem, v_input), dim=-2) | |
if exists(sinusoidal_emb): | |
# in shortformer, the query would start at a position offset depending on the past cached memory | |
offset = k_input.shape[-2] - q_input.shape[-2] | |
q_input = q_input + sinusoidal_emb(q_input, offset=offset) | |
k_input = k_input + sinusoidal_emb(k_input) | |
q = self.to_q(q_input) | |
k = self.to_k(k_input) | |
v = self.to_v(v_input) | |
q, k, v = map(lambda t: rearrange(t, "b n (h d) -> b h n d", h=h), (q, k, v)) | |
input_mask = None | |
if any(map(exists, (mask, context_mask))): | |
q_mask = default(mask, lambda: torch.ones((b, n), device=device).bool()) | |
k_mask = q_mask if not exists(context) else context_mask | |
k_mask = default( | |
k_mask, lambda: torch.ones((b, k.shape[-2]), device=device).bool() | |
) | |
q_mask = rearrange(q_mask, "b i -> b () i ()") | |
k_mask = rearrange(k_mask, "b j -> b () () j") | |
input_mask = q_mask * k_mask | |
if self.num_mem_kv > 0: | |
mem_k, mem_v = map( | |
lambda t: repeat(t, "h n d -> b h n d", b=b), (self.mem_k, self.mem_v) | |
) | |
k = torch.cat((mem_k, k), dim=-2) | |
v = torch.cat((mem_v, v), dim=-2) | |
if exists(input_mask): | |
input_mask = F.pad(input_mask, (self.num_mem_kv, 0), value=True) | |
dots = einsum("b h i d, b h j d -> b h i j", q, k) * self.scale | |
mask_value = max_neg_value(dots) | |
if exists(prev_attn): | |
dots = dots + prev_attn | |
pre_softmax_attn = dots | |
if talking_heads: | |
dots = einsum( | |
"b h i j, h k -> b k i j", dots, self.pre_softmax_proj | |
).contiguous() | |
if exists(rel_pos): | |
dots = rel_pos(dots) | |
if exists(input_mask): | |
dots.masked_fill_(~input_mask, mask_value) | |
del input_mask | |
if self.causal: | |
i, j = dots.shape[-2:] | |
r = torch.arange(i, device=device) | |
mask = rearrange(r, "i -> () () i ()") < rearrange(r, "j -> () () () j") | |
mask = F.pad(mask, (j - i, 0), value=False) | |
dots.masked_fill_(mask, mask_value) | |
del mask | |
if exists(self.sparse_topk) and self.sparse_topk < dots.shape[-1]: | |
top, _ = dots.topk(self.sparse_topk, dim=-1) | |
vk = top[..., -1].unsqueeze(-1).expand_as(dots) | |
mask = dots < vk | |
dots.masked_fill_(mask, mask_value) | |
del mask | |
attn = self.attn_fn(dots, dim=-1) | |
post_softmax_attn = attn | |
attn = self.dropout(attn) | |
if talking_heads: | |
attn = einsum( | |
"b h i j, h k -> b k i j", attn, self.post_softmax_proj | |
).contiguous() | |
out = einsum("b h i j, b h j d -> b h i d", attn, v) | |
out = rearrange(out, "b h n d -> b n (h d)") | |
intermediates = Intermediates( | |
pre_softmax_attn=pre_softmax_attn, post_softmax_attn=post_softmax_attn | |
) | |
return self.to_out(out), intermediates | |
class AttentionLayers(nn.Module): | |
def __init__( | |
self, | |
dim, | |
depth, | |
heads=8, | |
causal=False, | |
cross_attend=False, | |
only_cross=False, | |
use_scalenorm=False, | |
use_rmsnorm=False, | |
use_rezero=False, | |
rel_pos_num_buckets=32, | |
rel_pos_max_distance=128, | |
position_infused_attn=False, | |
custom_layers=None, | |
sandwich_coef=None, | |
par_ratio=None, | |
residual_attn=False, | |
cross_residual_attn=False, | |
macaron=False, | |
pre_norm=True, | |
gate_residual=False, | |
**kwargs, | |
): | |
super().__init__() | |
ff_kwargs, kwargs = groupby_prefix_and_trim("ff_", kwargs) | |
attn_kwargs, _ = groupby_prefix_and_trim("attn_", kwargs) | |
dim_head = attn_kwargs.get("dim_head", DEFAULT_DIM_HEAD) | |
self.dim = dim | |
self.depth = depth | |
self.layers = nn.ModuleList([]) | |
self.has_pos_emb = position_infused_attn | |
self.pia_pos_emb = ( | |
FixedPositionalEmbedding(dim) if position_infused_attn else None | |
) | |
self.rotary_pos_emb = always(None) | |
assert ( | |
rel_pos_num_buckets <= rel_pos_max_distance | |
), "number of relative position buckets must be less than the relative position max distance" | |
self.rel_pos = None | |
self.pre_norm = pre_norm | |
self.residual_attn = residual_attn | |
self.cross_residual_attn = cross_residual_attn | |
norm_class = ScaleNorm if use_scalenorm else nn.LayerNorm | |
norm_class = RMSNorm if use_rmsnorm else norm_class | |
norm_fn = partial(norm_class, dim) | |
norm_fn = nn.Identity if use_rezero else norm_fn | |
branch_fn = Rezero if use_rezero else None | |
if cross_attend and not only_cross: | |
default_block = ("a", "c", "f") | |
elif cross_attend and only_cross: | |
default_block = ("c", "f") | |
else: | |
default_block = ("a", "f") | |
if macaron: | |
default_block = ("f",) + default_block | |
if exists(custom_layers): | |
layer_types = custom_layers | |
elif exists(par_ratio): | |
par_depth = depth * len(default_block) | |
assert 1 < par_ratio <= par_depth, "par ratio out of range" | |
default_block = tuple(filter(not_equals("f"), default_block)) | |
par_attn = par_depth // par_ratio | |
depth_cut = ( | |
par_depth * 2 // 3 | |
) # 2 / 3 attention layer cutoff suggested by PAR paper | |
par_width = (depth_cut + depth_cut // par_attn) // par_attn | |
assert ( | |
len(default_block) <= par_width | |
), "default block is too large for par_ratio" | |
par_block = default_block + ("f",) * (par_width - len(default_block)) | |
par_head = par_block * par_attn | |
layer_types = par_head + ("f",) * (par_depth - len(par_head)) | |
elif exists(sandwich_coef): | |
assert ( | |
sandwich_coef > 0 and sandwich_coef <= depth | |
), "sandwich coefficient should be less than the depth" | |
layer_types = ( | |
("a",) * sandwich_coef | |
+ default_block * (depth - sandwich_coef) | |
+ ("f",) * sandwich_coef | |
) | |
else: | |
layer_types = default_block * depth | |
self.layer_types = layer_types | |
self.num_attn_layers = len(list(filter(equals("a"), layer_types))) | |
for layer_type in self.layer_types: | |
if layer_type == "a": | |
layer = Attention(dim, heads=heads, causal=causal, **attn_kwargs) | |
elif layer_type == "c": | |
layer = Attention(dim, heads=heads, **attn_kwargs) | |
elif layer_type == "f": | |
layer = FeedForward(dim, **ff_kwargs) | |
layer = layer if not macaron else Scale(0.5, layer) | |
else: | |
raise Exception(f"invalid layer type {layer_type}") | |
if isinstance(layer, Attention) and exists(branch_fn): | |
layer = branch_fn(layer) | |
if gate_residual: | |
residual_fn = GRUGating(dim) | |
else: | |
residual_fn = Residual() | |
self.layers.append(nn.ModuleList([norm_fn(), layer, residual_fn])) | |
def forward( | |
self, | |
x, | |
context=None, | |
mask=None, | |
context_mask=None, | |
mems=None, | |
return_hiddens=False, | |
): | |
hiddens = [] | |
intermediates = [] | |
prev_attn = None | |
prev_cross_attn = None | |
mems = mems.copy() if exists(mems) else [None] * self.num_attn_layers | |
for ind, (layer_type, (norm, block, residual_fn)) in enumerate( | |
zip(self.layer_types, self.layers) | |
): | |
is_last = ind == (len(self.layers) - 1) | |
if layer_type == "a": | |
hiddens.append(x) | |
layer_mem = mems.pop(0) | |
residual = x | |
if self.pre_norm: | |
x = norm(x) | |
if layer_type == "a": | |
out, inter = block( | |
x, | |
mask=mask, | |
sinusoidal_emb=self.pia_pos_emb, | |
rel_pos=self.rel_pos, | |
prev_attn=prev_attn, | |
mem=layer_mem, | |
) | |
elif layer_type == "c": | |
out, inter = block( | |
x, | |
context=context, | |
mask=mask, | |
context_mask=context_mask, | |
prev_attn=prev_cross_attn, | |
) | |
elif layer_type == "f": | |
out = block(x) | |
x = residual_fn(out, residual) | |
if layer_type in ("a", "c"): | |
intermediates.append(inter) | |
if layer_type == "a" and self.residual_attn: | |
prev_attn = inter.pre_softmax_attn | |
elif layer_type == "c" and self.cross_residual_attn: | |
prev_cross_attn = inter.pre_softmax_attn | |
if not self.pre_norm and not is_last: | |
x = norm(x) | |
if return_hiddens: | |
intermediates = LayerIntermediates( | |
hiddens=hiddens, attn_intermediates=intermediates | |
) | |
return x, intermediates | |
return x | |
class Encoder(AttentionLayers): | |
def __init__(self, **kwargs): | |
assert "causal" not in kwargs, "cannot set causality on encoder" | |
super().__init__(causal=False, **kwargs) | |
class TransformerWrapper(nn.Module): | |
def __init__( | |
self, | |
*, | |
num_tokens, | |
max_seq_len, | |
attn_layers, | |
emb_dim=None, | |
max_mem_len=0.0, | |
emb_dropout=0.0, | |
num_memory_tokens=None, | |
tie_embedding=False, | |
use_pos_emb=True, | |
): | |
super().__init__() | |
assert isinstance( | |
attn_layers, AttentionLayers | |
), "attention layers must be one of Encoder or Decoder" | |
dim = attn_layers.dim | |
emb_dim = default(emb_dim, dim) | |
self.max_seq_len = max_seq_len | |
self.max_mem_len = max_mem_len | |
self.num_tokens = num_tokens | |
self.token_emb = nn.Embedding(num_tokens, emb_dim) | |
self.pos_emb = ( | |
AbsolutePositionalEmbedding(emb_dim, max_seq_len) | |
if (use_pos_emb and not attn_layers.has_pos_emb) | |
else always(0) | |
) | |
self.emb_dropout = nn.Dropout(emb_dropout) | |
self.project_emb = nn.Linear(emb_dim, dim) if emb_dim != dim else nn.Identity() | |
self.attn_layers = attn_layers | |
self.norm = nn.LayerNorm(dim) | |
self.init_() | |
self.to_logits = ( | |
nn.Linear(dim, num_tokens) | |
if not tie_embedding | |
else lambda t: t @ self.token_emb.weight.t() | |
) | |
# memory tokens (like [cls]) from Memory Transformers paper | |
num_memory_tokens = default(num_memory_tokens, 0) | |
self.num_memory_tokens = num_memory_tokens | |
if num_memory_tokens > 0: | |
self.memory_tokens = nn.Parameter(torch.randn(num_memory_tokens, dim)) | |
# let funnel encoder know number of memory tokens, if specified | |
if hasattr(attn_layers, "num_memory_tokens"): | |
attn_layers.num_memory_tokens = num_memory_tokens | |
def init_(self): | |
nn.init.normal_(self.token_emb.weight, std=0.02) | |
def forward( | |
self, | |
x, | |
return_embeddings=False, | |
mask=None, | |
return_mems=False, | |
return_attn=False, | |
mems=None, | |
**kwargs, | |
): | |
b, n, device, num_mem = *x.shape, x.device, self.num_memory_tokens | |
x = self.token_emb(x) | |
x += self.pos_emb(x) | |
x = self.emb_dropout(x) | |
x = self.project_emb(x) | |
if num_mem > 0: | |
mem = repeat(self.memory_tokens, "n d -> b n d", b=b) | |
x = torch.cat((mem, x), dim=1) | |
# auto-handle masking after appending memory tokens | |
if exists(mask): | |
mask = F.pad(mask, (num_mem, 0), value=True) | |
x, intermediates = self.attn_layers( | |
x, mask=mask, mems=mems, return_hiddens=True, **kwargs | |
) | |
x = self.norm(x) | |
mem, x = x[:, :num_mem], x[:, num_mem:] | |
out = self.to_logits(x) if not return_embeddings else x | |
if return_mems: | |
hiddens = intermediates.hiddens | |
new_mems = ( | |
list(map(lambda pair: torch.cat(pair, dim=-2), zip(mems, hiddens))) | |
if exists(mems) | |
else hiddens | |
) | |
new_mems = list( | |
map(lambda t: t[..., -self.max_mem_len :, :].detach(), new_mems) | |
) | |
return out, new_mems | |
if return_attn: | |
attn_maps = list( | |
map(lambda t: t.post_softmax_attn, intermediates.attn_intermediates) | |
) | |
return out, attn_maps | |
return out | |