Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 11,874 Bytes
c055e89 18d89f0 20dc216 18d89f0 c055e89 0217d78 c055e89 46990af c055e89 20dc216 c055e89 20dc216 2bb5d82 72d3fba 1b42e63 1cb88a1 745942d 1cb88a1 18d89f0 20dc216 18d89f0 20dc216 1cb88a1 20dc216 18d89f0 2bb5d82 20dc216 5e67379 20dc216 0053ffc 20dc216 2bb5d82 20dc216 18d89f0 99f01ee 18d89f0 99f01ee 20dc216 99f01ee 20dc216 99f01ee 18d89f0 2bb5d82 20dc216 18d89f0 b0986f3 20dc216 ae1db9d c055e89 28550ba 20dc216 28550ba b0986f3 20dc216 18d89f0 9594ec2 18d89f0 9594ec2 20dc216 2bb5d82 6774870 2bb5d82 6774870 18d89f0 20dc216 6774870 20dc216 c055e89 72d3fba 1b42e63 1cb88a1 a2eae81 331c296 20dc216 72d3fba 9d1fc61 5e67379 4cb3b9d 5e67379 9d1fc61 5e67379 28550ba 5e67379 29874d6 5e67379 29874d6 9d1fc61 5e67379 3c7f052 5e67379 9658d8a 5e67379 9658d8a 3c7f052 5e67379 437deb5 5e67379 18d89f0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
import gradio as gr
import random
import os
import shutil
import pandas as pd
import sqlite3
from datasets import load_dataset
import threading
import time
from huggingface_hub import HfApi
DESCR = """
# TTS Arena
Vote on different speech synthesis models!
""".strip()
INSTR = """
## Instructions
* Listen to two anonymous models
* Vote on which one is more natural and realistic
* If there's a tie, click Skip
*IMPORTANT: Do not only rank the outputs based on naturalness. Also rank based on intelligibility (can you actually tell what they're saying?) and other factors (does it sound like a human?).*
**When you're ready to begin, click the Start button below!** The model names will be revealed once you vote.
""".strip()
request = ''
if os.getenv('HF_ID'):
request = f"""
### Request Model
Please fill out [this form](https://huggingface.co/spaces/{os.getenv('HF_ID')}/discussions/new?title=%5BModel+Request%5D+&description=%23%23%20Model%20Request%0A%0A%2A%2AModel%20website%2Fpaper%20%28if%20applicable%29%2A%2A%3A%0A%2A%2AModel%20available%20on%2A%2A%3A%20%28coqui%7CHF%20pipeline%7Ccustom%20code%29%0A%2A%2AWhy%20do%20you%20want%20this%20model%20added%3F%2A%2A%0A%2A%2AComments%3A%2A%2A) to request a model.
"""
ABOUT = f"""
## About
TTS Arena is a project created to evaluate leading speech synthesis models. It is inspired by the [Chatbot Arena](https://chat.lmsys.org/) by LMSYS.
{request}
""".strip()
LDESC = """
## Leaderboard
A list of the models, based on how highly they are ranked!
""".strip()
dataset = load_dataset("ttseval/tts-arena-new", token=os.getenv('HF_TOKEN'))
def reload_db():
global dataset
dataset = load_dataset("ttseval/tts-arena-new", token=os.getenv('HF_TOKEN'))
return 'Reload Dataset'
def del_db(txt):
if not txt.lower() == 'delete db':
raise gr.Error('You did not enter "delete db"')
api = HfApi(
token=os.getenv('HF_TOKEN')
)
os.remove('database.db')
create_db()
api.delete_file(
path_in_repo='database.db',
repo_id=os.getenv('DATASET_ID'),
repo_type='dataset'
)
return 'Delete DB'
theme = gr.themes.Base(
font=[gr.themes.GoogleFont('Libre Franklin'), gr.themes.GoogleFont('Public Sans'), 'system-ui', 'sans-serif'],
)
model_names = {
'styletts2': 'StyleTTS 2',
'tacotron': 'Tacotron',
'tacotronph': 'Tacotron Phoneme',
'tacotrondca': 'Tacotron DCA',
'speedyspeech': 'Speedy Speech',
'overflow': 'Overflow TTS',
'vits': 'VITS',
'vitsneon': 'VITS Neon',
'neuralhmm': 'Neural HMM',
'glow': 'Glow TTS',
'fastpitch': 'FastPitch',
'jenny': 'Jenny',
'tortoise': 'Tortoise TTS',
'xtts2': 'XTTSv2',
'xtts': 'XTTS',
'elevenlabs': 'ElevenLabs',
'openai': 'OpenAI',
'hierspeech': 'HierSpeech++',
'pheme': 'PolyAI Pheme',
'speecht5': 'SpeechT5',
}
# def get_random_split(existing_split=None):
# choice = random.choice(list(dataset.keys()))
# if existing_split and choice == existing_split:
# return get_random_split(choice)
# else:
# return choice
def get_db():
return sqlite3.connect('database.db')
def create_db():
conn = get_db()
cursor = conn.cursor()
cursor.execute('''
CREATE TABLE IF NOT EXISTS model (
name TEXT UNIQUE,
upvote INTEGER,
downvote INTEGER
);
''')
def get_data():
conn = get_db()
cursor = conn.cursor()
cursor.execute('SELECT name, upvote, downvote FROM model WHERE (upvote + downvote) > 5')
data = cursor.fetchall()
df = pd.DataFrame(data, columns=['name', 'upvote', 'downvote'])
df['name'] = df['name'].replace(model_names)
df['votes'] = df['upvote'] + df['downvote']
# df['score'] = round((df['upvote'] / df['votes']) * 100, 2) # Percentage score
## ELO SCORE
df['score'] = 1200
for i in range(len(df)):
for j in range(len(df)):
if i != j:
expected_a = 1 / (1 + 10 ** ((df['score'][j] - df['score'][i]) / 400))
expected_b = 1 / (1 + 10 ** ((df['score'][i] - df['score'][j]) / 400))
actual_a = df['upvote'][i] / df['votes'][i]
actual_b = df['upvote'][j] / df['votes'][j]
df.at[i, 'score'] += 32 * (actual_a - expected_a)
df.at[j, 'score'] += 32 * (actual_b - expected_b)
df['score'] = round(df['score'])
## ELO SCORE
df = df.sort_values(by='score', ascending=False)
# df = df[['name', 'score', 'upvote', 'votes']]
df = df[['name', 'score', 'votes']]
return df
# def get_random_splits():
# choice1 = get_random_split()
# choice2 = get_random_split(choice1)
# return (choice1, choice2)
def upvote_model(model):
conn = get_db()
cursor = conn.cursor()
cursor.execute('UPDATE model SET upvote = upvote + 1 WHERE name = ?', (model,))
if cursor.rowcount == 0:
cursor.execute('INSERT OR REPLACE INTO model (name, upvote, downvote) VALUES (?, 1, 0)', (model,))
conn.commit()
cursor.close()
def downvote_model(model):
conn = get_db()
cursor = conn.cursor()
cursor.execute('UPDATE model SET downvote = downvote + 1 WHERE name = ?', (model,))
if cursor.rowcount == 0:
cursor.execute('INSERT OR REPLACE INTO model (name, upvote, downvote) VALUES (?, 0, 1)', (model,))
conn.commit()
cursor.close()
def a_is_better(model1, model2):
if model1 and model2:
upvote_model(model1)
downvote_model(model2)
return reload(model1, model2)
def b_is_better(model1, model2):
if model1 and model2:
upvote_model(model2)
downvote_model(model1)
return reload(model1, model2)
def both_bad(model1, model2):
if model1 and model2:
downvote_model(model1)
downvote_model(model2)
return reload(model1, model2)
def both_good(model1, model2):
if model1 and model2:
upvote_model(model1)
upvote_model(model2)
return reload(model1, model2)
def reload(chosenmodel1=None, chosenmodel2=None):
# Select random splits
row = random.choice(list(dataset['train']))
options = list(random.choice(list(dataset['train'])).keys())
split1, split2 = random.sample(options, 2)
choice1, choice2 = (row[split1], row[split2])
if chosenmodel1 in model_names:
chosenmodel1 = model_names[chosenmodel1]
if chosenmodel2 in model_names:
chosenmodel2 = model_names[chosenmodel2]
out = [
(choice1['sampling_rate'], choice1['array']),
(choice2['sampling_rate'], choice2['array']),
split1,
split2
]
if chosenmodel1: out.append(f'This model was {chosenmodel1}')
if chosenmodel2: out.append(f'This model was {chosenmodel2}')
return out
with gr.Blocks() as leaderboard:
gr.Markdown(LDESC)
# df = gr.Dataframe(interactive=False, value=get_data())
df = gr.Dataframe(interactive=False, min_width=0, wrap=True, column_widths=[200, 50, 50])
reloadbtn = gr.Button("Refresh")
leaderboard.load(get_data, outputs=[df])
reloadbtn.click(get_data, outputs=[df])
with gr.Blocks() as vote:
gr.Markdown(INSTR)
with gr.Row():
gr.HTML('<div align="left"><h3>Model A</h3></div>')
gr.HTML('<div align="right"><h3>Model B</h3></div>')
model1 = gr.Textbox(interactive=False, visible=False)
model2 = gr.Textbox(interactive=False, visible=False)
# with gr.Group():
# with gr.Row():
# prevmodel1 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model A")
# prevmodel2 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model B", text_align="right")
# with gr.Row():
# aud1 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'})
# aud2 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'})
with gr.Group():
with gr.Row():
with gr.Column():
with gr.Group():
prevmodel1 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model A")
aud1 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'})
with gr.Column():
with gr.Group():
prevmodel2 = gr.Textbox(interactive=False, show_label=False, container=False, value="Vote to reveal model B", text_align="right")
aud2 = gr.Audio(interactive=False, show_label=False, show_download_button=False, show_share_button=False, waveform_options={'waveform_progress_color': '#3C82F6'})
with gr.Row():
abetter = gr.Button("A is Better", variant='primary', scale=4)
# skipbtn = gr.Button("Skip", scale=1)
bbetter = gr.Button("B is Better", variant='primary', scale=4)
with gr.Row():
bothbad = gr.Button("Both are Bad", scale=2)
skipbtn = gr.Button("Skip", scale=1)
bothgood = gr.Button("Both are Good", scale=2)
outputs = [aud1, aud2, model1, model2, prevmodel1, prevmodel2]
abetter.click(a_is_better, outputs=outputs, inputs=[model1, model2])
bbetter.click(b_is_better, outputs=outputs, inputs=[model1, model2])
skipbtn.click(b_is_better, outputs=outputs, inputs=[model1, model2])
bothbad.click(both_bad, outputs=outputs, inputs=[model1, model2])
bothgood.click(both_good, outputs=outputs, inputs=[model1, model2])
vote.load(reload, outputs=[aud1, aud2, model1, model2])
with gr.Blocks() as about:
gr.Markdown(ABOUT)
with gr.Blocks() as admin:
rdb = gr.Button("Reload Dataset")
rdb.click(reload_db, outputs=rdb)
with gr.Group():
dbtext = gr.Textbox(label="Type \"delete db\" to confirm", placeholder="delete db")
ddb = gr.Button("Delete DB")
ddb.click(del_db, inputs=dbtext, outputs=ddb)
with gr.Blocks(theme=theme, css="footer {visibility: hidden}", title="TTS Leaderboard") as demo:
gr.Markdown(DESCR)
gr.TabbedInterface([vote, leaderboard, about, admin], ['Vote', 'Leaderboard', 'About', 'Admin (ONLY IN BETA)'])
def restart_space():
api = HfApi(
token=os.getenv('HF_TOKEN')
)
time.sleep(60 * 60) # Every hour
print("Syncing DB before restarting space")
api.upload_file(
path_or_fileobj='database.db',
path_in_repo='database.db',
repo_id=os.getenv('DATASET_ID'),
repo_type='dataset'
)
print("Restarting space")
api.restart_space(repo_id=os.getenv('HF_ID'))
def sync_db():
api = HfApi(
token=os.getenv('HF_TOKEN')
)
while True:
time.sleep(60 * 10)
print("Uploading DB")
api.upload_file(
path_or_fileobj='database.db',
path_in_repo='database.db',
repo_id=os.getenv('DATASET_ID'),
repo_type='dataset'
)
if os.getenv('HF_ID'):
restart_thread = threading.Thread(target=restart_space)
restart_thread.daemon = True
restart_thread.start()
if os.getenv('DATASET_ID'):
# Fetch DB
api = HfApi(
token=os.getenv('HF_TOKEN')
)
print("Downloading DB...")
try:
path = api.hf_hub_download(
repo_id=os.getenv('DATASET_ID'),
repo_type='dataset',
filename='database.db',
cache_dir='./'
)
shutil.copyfile(path, 'database.db')
print("Downloaded DB")
except:
pass
# Update DB
db_thread = threading.Thread(target=sync_db)
db_thread.daemon = True
db_thread.start()
create_db()
demo.queue(api_open=False).launch(show_api=False) |