import logging import tiktoken from transformers import AutoTokenizer import gradio as gr logger = logging.getLogger(__name__) # noqa def load_test_phrases(filename): with open(f"./data/{filename}", "r", encoding="utf-8") as file: return file.read().splitlines() models = ["Xenova/claude-tokenizer", # Anthropic "ai4bharat/Airavata", # ARIVATA "openaccess-ai-collective/tiny-mistral", # Mistral "gpt-3.5-turbo", # GPT3.5 "meta-llama/Llama-3.1-8B-Instruct", # LLAMA-3 "CohereForAI/aya-23-8B", # AYA "google/gemma-1.1-2b-it", # GEMMA "gpt-4o", # GPT4o "TWO/sutra-mlt256-v2"] # SUTRA test_phrase_set = [ "I am going for a walk later today", "நாங்கள் சந்திரனுக்கு ராக்கெட் பயணத்தில் இருக்கிறோம்", "양자 중성자 산란이란 무엇입니까?", # Korean "मुझे पाँच वाक्यों में न्यूट्रॉन प्रकीर्णन की व्याख्या दीजिए", # Hindi "mujhe paanch vaakyon mein nyootron prakeernan kee vyaakhya deejie", "আমাকে পাঁচটি বাক্যে নিউট্রন বিচ্ছুরণের একটি ব্যাখ্যা দিন", # Bengali/Bangla "Amake pamcati bakye ni'utrana bicchuranera ekati byakhya dina", "મને પાંચ વાક્યોમાં ન્યુટ્રોન સ્કેટરિંગની સમજૂતી આપો", # Gujarati "Mane panca vakyomam n'yutrona sketaringani samajuti apo", "நியூட்ரான் சிதறல் பற்றிய விளக்கத்தை ஐந்து வாக்கியங்களில் கொடுங்கள்", # Tamil "Niyutran citaral parriya vilakkattai aintu vakkiyankalil kotunkal", "मला पाच वाक्यात न्यूट्रॉन स्कॅटरिंगचे स्पष्टीकरण द्या", # Marathi "ఐదు వాక్యాలలో న్యూట్రాన్ స్కాటరింగ్ గురించి నాకు వివరణ ఇవ్వండి", # Telugu ] test_phrase_set_long_1 = load_test_phrases('multilingualphrases01.txt') test_phrase_set_long_2 = load_test_phrases('multilingualphrases02.txt') test_phrase_set_long_3 = load_test_phrases('multilingualphrases03.txt') def generate_tokens_as_table(text): table = [] for model in models: if 'gpt' not in model: tokenizer = AutoTokenizer.from_pretrained(model) tokens = tokenizer.encode(text, add_special_tokens=False) else: tokenizer = tiktoken.encoding_for_model(model) tokens = tokenizer.encode(text) decoded = [tokenizer.decode([t]) for t in tokens] table.append([model] + decoded) return table def generate_tokenizer_table(text): if not text: return [] token_counts = {model: 0 for model in models} vocab_size = {model: 0 for model in models} for model in models: if 'gpt' not in model: tokenizer = AutoTokenizer.from_pretrained(model) vocab_size[model] = tokenizer.vocab_size else: tokenizer = tiktoken.encoding_for_model(model) vocab_size[model] = tokenizer.n_vocab token_counts[model] += len(tokenizer.encode(text)) word_count = len(text.split(' ')) output = [] for m in models: row = [m, vocab_size[m], word_count, token_counts[m], f"{token_counts[m] / word_count:0.2f}"] output.append(row) return output def generate_split_token_table(text): if not text: return gr.Dataframe() table = generate_tokenizer_table(text) return gr.Dataframe( table, headers=['tokenizer', 'v size', '#word', '#token', '#tokens/word'], datatype=["str", "number", "str"], row_count=len(models), col_count=(5, "fixed"), ) with gr.Blocks() as sutra_token_count: gr.Markdown( """ # SUTRA Multilingual Tokenizer Specs & Stats. ## Tokenize paragraphs in multiple languages and compare token counts. """) textbox = gr.Textbox(label="Input Text") submit_button = gr.Button("Submit") output = gr.Dataframe() examples = [ [' '.join(test_phrase_set_long_1)], [' '.join(test_phrase_set_long_2)], [' '.join(test_phrase_set_long_3)], ] gr.Examples(examples=examples, inputs=[textbox]) submit_button.click(generate_split_token_table, inputs=[textbox], outputs=[output]) def generate_tokens_table(text): table = generate_tokens_as_table(text) cols = len(table[0]) return gr.Dataframe( table, headers=['model'] + [str(i) for i in range(cols - 1)], row_count=2, col_count=(cols, "fixed"), ) with gr.Blocks() as sutra_tokenize: gr.Markdown( """ # SUTRA Multilingual Tokenizer Sentence Inspector. ## Tokenize a sentence with various tokenizers and inspect how it's broken down. """) textbox = gr.Textbox(label="Input Text") submit_button = gr.Button("Submit") output = gr.Dataframe() examples = test_phrase_set gr.Examples(examples=examples, inputs=[textbox]) submit_button.click(generate_tokens_table, inputs=[textbox], outputs=[output]) if __name__ == '__main__': with gr.Blocks(analytics_enabled=False) as demo: with gr.Row(): gr.Markdown( """ ## """ ) with gr.Row(): gr.TabbedInterface( interface_list=[sutra_tokenize, sutra_token_count], tab_names=["Tokenize Text", "Tokenize Paragraphs"] ) demo.queue(default_concurrency_limit=5).launch( server_name="0.0.0.0", allowed_paths=["/"], )