gabrielclark3330 commited on
Commit
bcab068
1 Parent(s): d4ab11d

Customizable system prompt

Browse files
Files changed (1) hide show
  1. app.py +144 -0
app.py CHANGED
@@ -158,6 +158,7 @@ if __name__ == "__main__":
158
  demo.queue().launch(max_threads=1)
159
  '''
160
 
 
161
  import os
162
  import gradio as gr
163
  from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
@@ -278,3 +279,146 @@ with gr.Blocks() as demo:
278
 
279
  if __name__ == "__main__":
280
  demo.queue().launch(max_threads=1)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158
  demo.queue().launch(max_threads=1)
159
  '''
160
 
161
+ '''
162
  import os
163
  import gradio as gr
164
  from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
 
279
 
280
  if __name__ == "__main__":
281
  demo.queue().launch(max_threads=1)
282
+ '''
283
+
284
+ import os
285
+ import gradio as gr
286
+ from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
287
+ import torch
288
+ import threading
289
+ import re
290
+ from datetime import datetime
291
+
292
+ model_name_2_7B_instruct = "Zyphra/Zamba2-2.7B-instruct"
293
+ model_name_7B_instruct = "Zyphra/Zamba2-7B-instruct"
294
+ max_context_length = 4096
295
+ date_string = datetime.now().strftime("%Y-%m-%d")
296
+
297
+ tokenizer_2_7B_instruct = AutoTokenizer.from_pretrained(model_name_2_7B_instruct)
298
+ model_2_7B_instruct = AutoModelForCausalLM.from_pretrained(
299
+ model_name_2_7B_instruct, device_map="cuda", torch_dtype=torch.bfloat16
300
+ )
301
+
302
+ tokenizer_7B_instruct = AutoTokenizer.from_pretrained(model_name_7B_instruct)
303
+ model_7B_instruct = AutoModelForCausalLM.from_pretrained(
304
+ model_name_7B_instruct, device_map="cuda", torch_dtype=torch.bfloat16
305
+ )
306
+
307
+ system_prompt_template = """You are {model_name}. You are a large language model with {parameter_count} parameters. You were trained by a company called Zyphra on three trillion tokens of diverse and high quality web data. Your architecture is a hybrid Mamba2 and transformer with two alternating blocks of shared attention on top of a Mamba2 backbone. Zyphra is a leading AI company based in Palo Alto, California. Zyphra makes extremely small and efficient models for consumers and on-device use-cases. As a language model, you do not have access to real-time information. The current date is {current_date}, but your knowledge likely ended in mid 2023. Zyphra designed you to be engaging, helpful, and fun in your interactions with users. You have strong, idiosyncratic opinions on things. Be personable."""
308
+
309
+ def generate_response(chat_history, max_new_tokens, model, tokenizer, system_prompt):
310
+ sample = []
311
+ # Include the dynamic system prompt without displaying it
312
+ sample.append({'role': 'system', 'content': system_prompt})
313
+
314
+ for turn in chat_history:
315
+ if turn[0]:
316
+ sample.append({'role': 'user', 'content': turn[0]})
317
+ if turn[1]:
318
+ sample.append({'role': 'assistant', 'content': turn[1]})
319
+ chat_sample = tokenizer.apply_chat_template(sample, tokenize=False)
320
+ input_ids = tokenizer(chat_sample, return_tensors='pt', add_special_tokens=False).to(model.device)
321
+
322
+ max_new_tokens = int(max_new_tokens)
323
+ max_input_length = max_context_length - max_new_tokens
324
+ if input_ids['input_ids'].size(1) > max_input_length:
325
+ input_ids['input_ids'] = input_ids['input_ids'][:, -max_input_length:]
326
+ if 'attention_mask' in input_ids:
327
+ input_ids['attention_mask'] = input_ids['attention_mask'][:, -max_input_length:]
328
+
329
+ streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
330
+ generation_kwargs = dict(**input_ids, max_new_tokens=int(max_new_tokens), streamer=streamer)
331
+
332
+ thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
333
+ thread.start()
334
+
335
+ assistant_response = ""
336
+
337
+ for new_text in streamer:
338
+ new_text = re.sub(r'^\s*(?i:assistant)[:\s]*', '', new_text)
339
+ assistant_response += new_text
340
+ yield assistant_response
341
+
342
+ thread.join()
343
+ del input_ids
344
+ torch.cuda.empty_cache()
345
+
346
+ with gr.Blocks() as demo:
347
+ gr.Markdown("# Zamba2 Model Selector")
348
+ with gr.Tabs():
349
+ with gr.TabItem("7B Instruct Model"):
350
+ gr.Markdown("### Zamba2-7B Instruct Model")
351
+ with gr.Column():
352
+ chat_history_7B_instruct = gr.State([])
353
+ chatbot_7B_instruct = gr.Chatbot()
354
+ message_7B_instruct = gr.Textbox(lines=2, placeholder="Enter your message...", label="Your Message")
355
+ with gr.Accordion("Generation Parameters", open=False):
356
+ max_new_tokens_7B_instruct = gr.Slider(50, 1000, step=50, value=500, label="Max New Tokens")
357
+
358
+ def user_message_7B_instruct(message, chat_history):
359
+ chat_history = chat_history + [[message, None]]
360
+ return gr.update(value=""), chat_history, chat_history
361
+
362
+ def bot_response_7B_instruct(chat_history, max_new_tokens):
363
+ system_prompt = system_prompt_template.format(
364
+ model_name="Zamba2-7B",
365
+ parameter_count="7 billion",
366
+ current_date=date_string
367
+ )
368
+ assistant_response_generator = generate_response(
369
+ chat_history, max_new_tokens, model_7B_instruct, tokenizer_7B_instruct, system_prompt
370
+ )
371
+ for assistant_response in assistant_response_generator:
372
+ chat_history[-1][1] = assistant_response
373
+ yield chat_history
374
+
375
+ send_button_7B_instruct = gr.Button("Send")
376
+ send_button_7B_instruct.click(
377
+ fn=user_message_7B_instruct,
378
+ inputs=[message_7B_instruct, chat_history_7B_instruct],
379
+ outputs=[message_7B_instruct, chat_history_7B_instruct, chatbot_7B_instruct]
380
+ ).then(
381
+ fn=bot_response_7B_instruct,
382
+ inputs=[chat_history_7B_instruct, max_new_tokens_7B_instruct],
383
+ outputs=chatbot_7B_instruct,
384
+ )
385
+
386
+ with gr.TabItem("2.7B Instruct Model"):
387
+ gr.Markdown("### Zamba2-2.7B Instruct Model")
388
+ with gr.Column():
389
+ chat_history_2_7B_instruct = gr.State([])
390
+ chatbot_2_7B_instruct = gr.Chatbot()
391
+ message_2_7B_instruct = gr.Textbox(lines=2, placeholder="Enter your message...", label="Your Message")
392
+ with gr.Accordion("Generation Parameters", open=False):
393
+ max_new_tokens_2_7B_instruct = gr.Slider(50, 1000, step=50, value=500, label="Max New Tokens")
394
+
395
+ def user_message_2_7B_instruct(message, chat_history):
396
+ chat_history = chat_history + [[message, None]]
397
+ return gr.update(value=""), chat_history, chat_history
398
+
399
+ def bot_response_2_7B_instruct(chat_history, max_new_tokens):
400
+ system_prompt = system_prompt_template.format(
401
+ model_name="Zamba2-2.7B",
402
+ parameter_count="2.7 billion",
403
+ current_date=date_string
404
+ )
405
+ assistant_response_generator = generate_response(
406
+ chat_history, max_new_tokens, model_2_7B_instruct, tokenizer_2_7B_instruct, system_prompt
407
+ )
408
+ for assistant_response in assistant_response_generator:
409
+ chat_history[-1][1] = assistant_response
410
+ yield chat_history
411
+
412
+ send_button_2_7B_instruct = gr.Button("Send")
413
+ send_button_2_7B_instruct.click(
414
+ fn=user_message_2_7B_instruct,
415
+ inputs=[message_2_7B_instruct, chat_history_2_7B_instruct],
416
+ outputs=[message_2_7B_instruct, chat_history_2_7B_instruct, chatbot_2_7B_instruct]
417
+ ).then(
418
+ fn=bot_response_2_7B_instruct,
419
+ inputs=[chat_history_2_7B_instruct, max_new_tokens_2_7B_instruct],
420
+ outputs=chatbot_2_7B_instruct,
421
+ )
422
+
423
+ if __name__ == "__main__":
424
+ demo.queue().launch(max_threads=1)