Spaces:
Running
Running
File size: 18,891 Bytes
83922b2 b051760 bf9bc10 83922b2 14692ff a17f91f 83922b2 93ab749 b051760 93ab749 a17f91f 93ab749 f59fc85 93ab749 9354fd7 fae982e 93ab749 fbbe6d4 a17f91f fbbe6d4 a17f91f fbbe6d4 f59fc85 b051760 93ab749 fae982e 93ab749 83922b2 0a0e499 83922b2 0a0e499 83922b2 0a0e499 83922b2 6180705 0012aa9 83922b2 0a0e499 83922b2 93ab749 a6a3470 93ab749 05c653a 93ab749 83922b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
import torch
import gradio as gr
import yt_dlp as youtube_dl
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, WhisperTokenizer, pipeline
from transformers.pipelines.audio_utils import ffmpeg_read
import tempfile
import os
import time
import requests
from playwright.sync_api import sync_playwright
from languages import get_language_names
from subtitle import text_output, subtitle_output
import datetime
import psutil
import subprocess
from gpustat import GPUStatCollection
import cpuinfo
try:
import spaces
USING_SPACES = True
except ImportError:
USING_SPACES = False
subprocess.run(
"pip install flash-attn --no-build-isolation",
env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
shell=True,
)
os.system("playwright install")
YT_LENGTH_LIMIT_S = 360
SPACES_GPU_DURATION = 90
device = 0 if torch.cuda.is_available() else "cpu"
def gpu_decorator(duration=60):
def actual_decorator(func):
if USING_SPACES:
return spaces.GPU(duration=duration)(func)
return func
return actual_decorator
def device_info():
try:
subprocess.run(["df", "-h"], check=True)
subprocess.run(["lsblk"], check=True)
subprocess.run(["free", "-h"], check=True)
subprocess.run(["lscpu"], check=True)
subprocess.run(["nvidia-smi"], check=True)
except subprocess.CalledProcessError as e:
print(f"Command failed: {e}")
def update_gpu_status():
if torch.cuda.is_available() == False:
return "No Nvidia Device"
try:
gpu_stats = GPUStatCollection.new_query()
for gpu in gpu_stats:
# Assuming you want to monitor the first GPU, index 0
gpu_id = gpu.index
gpu_name = gpu.name
gpu_utilization = gpu.utilization
memory_used = gpu.memory_used
memory_total = gpu.memory_total
memory_utilization = (memory_used / memory_total) * 100
gpu_status=(f"**GPU Name** {gpu_id}: {gpu_name}\nUtilization: {gpu_utilization}%\n**Memory Used**: {memory_used}MB\n**Memory Total**: {memory_total}MB\n**Memory Utilization**: {memory_utilization:.2f}%\n")
return gpu_status
except Exception as e:
return torch_update_gpu_status()
def torch_update_gpu_status():
if torch.cuda.is_available():
gpu_info = torch.cuda.get_device_name(0)
gpu_memory = torch.cuda.mem_get_info(0)
total_memory = gpu_memory[1] / (1024 * 1024 * 1024)
free_memory=gpu_memory[0] /(1024 *1024 * 1024)
used_memory = (gpu_memory[1] - gpu_memory[0]) / (1024 * 1024 * 1024)
gpu_status = f"**GPU Name**: {gpu_info}\n**Free Memory**: {free_memory:.2f}GB\n**Total Memory**: {total_memory:.2f} GB\n**Used Memory**: {used_memory:.2f} GB\n"
else:
gpu_status = "No GPU available"
return gpu_status
def update_cpu_status():
current_time = datetime.datetime.utcnow()
time_str = current_time.strftime("%Y-%m-%d %H:%M:%S")
cpu_percent = psutil.cpu_percent()
cpu_freq = psutil.cpu_freq()
cpu_count = psutil.cpu_count(logical=True)
cpu_name = cpuinfo.get_cpu_info().get("brand_raw", "Unknown CPU")
virtual_memory = psutil.virtual_memory()
cpu_status = f"**{time_str} (UTC+0)**\n\n"
cpu_status += f"**CPU Name**: {cpu_name}\n"
cpu_status += f"**CPU Usage**: {cpu_percent}%\n"
cpu_status += f"**CPU Frequency**: *Current*: {cpu_freq.current:.2f}MHz, *Max*: {cpu_freq.max:.2f}MHz, *Min*: {cpu_freq.min:.2f}MHz\n"
cpu_status += f"**CPU Cores**: {cpu_count}\n"
cpu_status += f"**Virtual Memory**: *Total*: {(virtual_memory.total / (1024 * 1024 * 1024)):.2f}GB, *Available*: {(virtual_memory.available / (1024 * 1024 * 1024)):.2f}GB, *Used*: {(virtual_memory.used / (1024 * 1024 * 1024)):.2f}GB, *Percentage*: {virtual_memory.percent}%\n\n"
return cpu_status
def update_status():
gpu_status = update_gpu_status()
cpu_status = update_cpu_status()
sys_status=cpu_status+gpu_status
return sys_status
def refresh_status():
return update_status()
@gpu_decorator(duration=SPACES_GPU_DURATION)
def transcribe(inputs, model, language, batch_size, chunk_length_s, stride_length_s, task, timestamp_mode, progress=gr.Progress(track_tqdm=True)):
try:
if inputs is None:
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
torch_dtype = torch.float16
model_gen = AutoModelForSpeechSeq2Seq.from_pretrained(
model, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model_gen.to(device)
processor = AutoProcessor.from_pretrained(model)
tokenizer = WhisperTokenizer.from_pretrained(model)
pipe = pipeline(
task="automatic-speech-recognition",
model=model_gen,
chunk_length_s=chunk_length_s,
stride_length_s=stride_length_s,
tokenizer=tokenizer,
feature_extractor=processor.feature_extractor,
torch_dtype=torch_dtype,
model_kwargs={"attn_implementation": "flash_attention_2"},
device=device,
)
generate_kwargs = {}
if language != "Automatic Detection" and model.endswith(".en") == False:
generate_kwargs["language"] = language
if model.endswith(".en") == False:
generate_kwargs["task"] = task
output = pipe(inputs, batch_size=batch_size, generate_kwargs=generate_kwargs, return_timestamps=timestamp_mode)
print(output)
print({"inputs": inputs, "model": model, "language": language, "batch_size": batch_size, "chunk_length_s": chunk_length_s, "stride_length_s": stride_length_s, "task": task, "timestamp_mode": timestamp_mode})
if not timestamp_mode:
text = output['text']
return text_output(inputs, text)
else:
chunks = output['chunks']
return subtitle_output(inputs, chunks)
except Exception as e:
error_message = str(e)
raise gr.Error(error_message, duration=20)
def _download_yt_audio(yt_url, filename):
info_loader = youtube_dl.YoutubeDL()
try:
info = info_loader.extract_info(yt_url, download=False)
except youtube_dl.utils.DownloadError as err:
raise gr.Error(str(err))
file_length = info.get("duration_string")
if not file_length:
raise gr.Error("Video duration is unavailable.")
file_h_m_s = file_length.split(":")
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
if len(file_h_m_s) == 1:
file_h_m_s.insert(0, 0)
if len(file_h_m_s) == 2:
file_h_m_s.insert(0, 0)
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
if file_length_s > YT_LENGTH_LIMIT_S:
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.", duration=20)
try:
ydl_opts = {
"outtmpl": filename,
"format": "bestaudio[ext=m4a]/best",
}
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
ydl.download([yt_url])
except youtube_dl.utils.ExtractorError as err:
available_formats = info_loader.extract_info(yt_url, download=False)['formats']
raise gr.Error(f"Requested format not available. Available formats: {available_formats}", duration=20)
def _return_yt_video_id(yt_url):
if "youtube.com/watch?v=" in yt_url:
video_id = yt_url.split("?v=")[1].split("&")[0]
elif "youtu.be/" in yt_url:
video_id = yt_url.split("youtu.be/")[1].split("?")[0]
return video_id
def _return_yt_html_embed(yt_url):
video_id = _return_yt_video_id(yt_url)
HTML_str = (
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
" </center>"
)
return HTML_str
def _return_yt_thumbnail(yt_url):
video_id = _return_yt_video_id(yt_url)
if not video_id:
raise ValueError("Invalid YouTube URL: Unable to extract video ID.")
thumbnail_url = f"https://img.youtube.com/vi/{video_id}/maxresdefault.jpg"
thumbnail_path = None
try:
with tempfile.NamedTemporaryFile(delete=False, suffix='.jpg') as temp_file:
response = requests.get(thumbnail_url)
if response.status_code == 200:
temp_file.write(response.content)
thumbnail_path = temp_file.name
else:
raise Exception(f"Failed to retrieve thumbnail. Status code: {response.status_code}")
except Exception as e:
print(f"Error occurred: {e}")
return None
return thumbnail_path
def _return_yt_info(yt_url):
video_id = _return_yt_video_id(yt_url)
try:
with sync_playwright() as p:
browser = p.chromium.launch(headless=True)
page = browser.new_page()
page.goto(yt_url)
page.wait_for_load_state("networkidle")
title = page.title()
description = page.query_selector("meta[name='description']").get_attribute("content")
keywords = page.query_selector("meta[name='keywords']").get_attribute("content")
gr_title = gr.Textbox(label="YouTube Title", visible=True, value=title)
gr_description = gr.Textbox(label="YouTube Description", visible=True, value=description)
gr_keywords = gr.Textbox(label="YouTube Keywords", visible=True, value=keywords)
browser.close()
return gr_title, gr_description, gr_keywords
except Exception as e:
print(e)
return gr.Textbox(visible=False), gr.Textbox(visible=False), gr.Textbox(visible=False)
def return_youtube(yt_url):
html_embed_str = _return_yt_html_embed(yt_url)
thumbnail = _return_yt_thumbnail(yt_url)
gr_html = gr.HTML(label="Youtube Video", visible=True, value=html_embed_str)
gr_thumbnail = gr.Image(label="Youtube Thumbnail", visible=True, value=thumbnail)
gr_title, gr_description, gr_keywords = _return_yt_info(yt_url)
return gr_html, gr_thumbnail, gr_title, gr_description, gr_keywords
@gpu_decorator(duration=SPACES_GPU_DURATION)
def yt_transcribe(yt_url, model, language, batch_size, chunk_length_s, stride_length_s, task, timestamp_mode):
gr_html, gr_thumbnail, gr_title, gr_description, gr_keywords = return_youtube(yt_url)
try:
with tempfile.TemporaryDirectory() as tmpdirname:
filepath = os.path.join(tmpdirname, "video.mp4")
_download_yt_audio(yt_url, filepath)
with open(filepath, "rb") as f:
inputs = f.read()
inputs = ffmpeg_read(inputs, pipe.feature_extractor.sampling_rate)
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
torch_dtype = torch.float16
model_gen = AutoModelForSpeechSeq2Seq.from_pretrained(
model, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
)
model_gen.to(device)
processor = AutoProcessor.from_pretrained(model)
tokenizer = WhisperTokenizer.from_pretrained(model)
pipe = pipeline(
task="automatic-speech-recognition",
model=model_gen,
chunk_length_s=chunk_length_s,
stride_length_s=stride_length_s,
tokenizer=tokenizer,
feature_extractor=processor.feature_extractor,
torch_dtype=torch_dtype,
model_kwargs={"attn_implementation": "flash_attention_2"},
device=device,
)
generate_kwargs = {}
if language != "Automatic Detection" and model.endswith(".en") == False:
generate_kwargs["language"] = language
if model.endswith(".en") == False:
generate_kwargs["task"] = task
output = pipe(inputs, batch_size=batch_size, generate_kwargs=generate_kwargs, return_timestamps=timestamp_mode)
print(output)
print({"inputs": yt_url, "model": model, "language": language, "batch_size": batch_size, "chunk_length_s": chunk_length_s, "stride_length_s": stride_length_s, "task": task, "timestamp_mode": timestamp_mode})
if not timestamp_mode:
text = output['text']
subtitle, files = text_output(inputs, text)
else:
chunks = output['chunks']
subtitle, files = subtitle_output(inputs, chunks)
return subtitle, files, gr_title, gr_html, gr_thumbnail, gr_description, gr_keywords
except Exception as e:
error_message = str(e)
gr.Warning(error_message, duration=20)
return gr.Textbox(visible=False),gr.Textbox(visible=False), gr_title, gr_html, gr_thumbnail, gr_description, gr_keywords
demo = gr.Blocks()
file_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Audio(sources=['upload', 'microphone'], type="filepath", label="Audio file"),
gr.Dropdown(
choices=[
"openai/whisper-tiny",
"openai/whisper-base",
"openai/whisper-small",
"openai/whisper-medium",
"openai/whisper-large",
"openai/whisper-large-v1",
"openai/whisper-large-v2", "distil-whisper/distil-large-v2",
"openai/whisper-large-v3", "openai/whisper-large-v3-turbo", "distil-whisper/distil-large-v3", "xaviviro/whisper-large-v3-catalan-finetuned-v2",
],
value="openai/whisper-large-v3-turbo",
label="Model Name",
allow_custom_value=True,
),
gr.Dropdown(choices=["Automatic Detection"] + sorted(get_language_names()), value="Automatic Detection", label="Language", interactive = True,),
gr.Slider(label="Batch Size", minimum=1, maximum=32, value=16, step=1),
gr.Slider(label="Chunk Length (s)", minimum=1, maximum=60, value=17.5, step=0.1),
gr.Slider(label="Stride Length (s)", minimum=1, maximum=30, value=1, step=0.1),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
gr.Dropdown(
choices=[True, False, "word"],
value=True,
label="Timestamp Mode"
),
],
outputs=[gr.Textbox(label="Output"), gr.File(label="Download Files")],
title="Whisper: Transcribe Audio",
flagging_mode="auto",
)
video_transcribe = gr.Interface(
fn=transcribe,
inputs=[
gr.Video(sources=["upload", "webcam"], label="Video file", show_label=False, show_download_button=False, show_share_button=False, streaming=True),
gr.Dropdown(
choices=[
"openai/whisper-tiny",
"openai/whisper-base",
"openai/whisper-small",
"openai/whisper-medium",
"openai/whisper-large",
"openai/whisper-large-v1",
"openai/whisper-large-v2", "distil-whisper/distil-large-v2",
"openai/whisper-large-v3", "openai/whisper-large-v3-turbo", "distil-whisper/distil-large-v3", "xaviviro/whisper-large-v3-catalan-finetuned-v2",
],
value="openai/whisper-large-v3-turbo",
label="Model Name",
allow_custom_value=True,
),
gr.Dropdown(choices=["Automatic Detection"] + sorted(get_language_names()), value="Automatic Detection", label="Language", interactive = True,),
gr.Slider(label="Batch Size", minimum=1, maximum=32, value=16, step=1),
gr.Slider(label="Chunk Length (s)", minimum=1, maximum=60, value=17.5, step=0.1),
gr.Slider(label="Stride Length (s)", minimum=1, maximum=30, value=1, step=0.1),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
gr.Dropdown(
choices=[True, False, "word"],
value=True,
label="Timestamp Mode"
),
],
outputs=[gr.Textbox(label="Output"), gr.File(label="Download Files")],
title="Whisper: Transcribe Video",
flagging_mode="auto",
)
yt_transcribe = gr.Interface(
fn=yt_transcribe,
inputs=[
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"),
gr.Dropdown(
choices=[
"openai/whisper-tiny",
"openai/whisper-base",
"openai/whisper-small",
"openai/whisper-medium",
"openai/whisper-large",
"openai/whisper-large-v1",
"openai/whisper-large-v2", "distil-whisper/distil-large-v2",
"openai/whisper-large-v3", "openai/whisper-large-v3-turbo", "distil-whisper/distil-large-v3", "xaviviro/whisper-large-v3-catalan-finetuned-v2",
],
value="openai/whisper-large-v3-turbo",
label="Model Name",
allow_custom_value=True,
),
gr.Dropdown(choices=["Automatic Detection"] + sorted(get_language_names()), value="Automatic Detection", label="Language", interactive = True,),
gr.Slider(label="Batch Size", minimum=1, maximum=32, value=16, step=1),
gr.Slider(label="Chunk Length (s)", minimum=1, maximum=60, value=17.5, step=0.1),
gr.Slider(label="Stride Length (s)", minimum=1, maximum=30, value=1, step=0.1),
gr.Radio(["transcribe", "translate"], label="Task", value="transcribe"),
gr.Dropdown(
choices=[True, False, "word"],
value=True,
label="Timestamp Mode"
),
],
outputs=[
gr.Textbox(label="Output"),
gr.File(label="Download Files"),
gr.Textbox(label="Youtube Title"),
gr.HTML(label="Youtube Video"),
gr.Image(label="Youtube Thumbnail"),
gr.Textbox(label="Youtube Description"),
gr.Textbox(label="Youtube Keywords"),
],
title="Whisper: Transcribe YouTube",
flagging_mode="auto",
)
with demo:
gr.TabbedInterface(
interface_list=[file_transcribe, video_transcribe, yt_transcribe],
tab_names=["Audio", "Video", "YouTube"]
)
with gr.Group():
sys_status_output = gr.Markdown(value=refresh_status, label="System Status", container=True, line_breaks=True, show_copy_button=True, every=30)
refresh_button = gr.Button("Refresh System Status")
refresh_button.click(refresh_status, None, sys_status_output)
sys_status_output.value = refresh_status()
if __name__ == "__main__":
demo.queue().launch(ssr_mode=False) |