Spaces:
Running
Running
from nemo.collections.asr.models import EncDecCTCModelBPE | |
#import yt_dlp as youtube_dl | |
import os | |
import tempfile | |
import torch | |
import gradio as gr | |
from pydub import AudioSegment | |
import time | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
MODEL_NAME="ayymen/stt_zgh_fastconformer_ctc_small" | |
YT_LENGTH_LIMIT_S=3600 | |
model = EncDecCTCModelBPE.from_pretrained(model_name=MODEL_NAME).to(device) | |
model.eval() | |
def get_transcripts(audio_path): | |
audio = AudioSegment.from_file(audio_path) | |
# check if audio is mono 16kHz | |
if audio.channels != 1 or audio.frame_rate != 16000: | |
audio = audio.set_channels(1).set_frame_rate(16000) # convert to mono 16kHz | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
audio_path = os.path.join(tmpdirname, "audio.wav") | |
audio.export(audio_path, format="wav") | |
text = model.transcribe([audio_path])[0] | |
else: | |
text = model.transcribe([audio_path])[0] | |
return text | |
''' | |
article = ( | |
"<p style='text-align: center'>" | |
"<a href='https://huggingface.co/nvidia/parakeet-rnnt-1.1b' target='_blank'>ποΈ Learn more about Parakeet model</a> | " | |
"<a href='https://arxiv.org/abs/2305.05084' target='_blank'>π FastConformer paper</a> | " | |
"<a href='https://github.com/NVIDIA/NeMo' target='_blank'>π§βπ» Repository</a>" | |
"</p>" | |
) | |
''' | |
EXAMPLES = [ | |
["135.wav"], | |
["common_voice_zgh_37837257.mp3"] | |
] | |
""" | |
YT_EXAMPLES = [ | |
["https://www.youtube.com/shorts/CSgTSE50MHY"], | |
["https://www.youtube.com/shorts/OxQtqOyAFLE"] | |
] | |
""" | |
def _return_yt_html_embed(yt_url): | |
video_id = yt_url.split("?v=")[-1] | |
if "youtube.com/shorts/" in video_id: | |
video_id = video_id.split("/")[-1] | |
HTML_str = ( | |
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>' | |
" </center>" | |
) | |
return HTML_str | |
def download_yt_audio(yt_url, filename): | |
info_loader = youtube_dl.YoutubeDL() | |
try: | |
info = info_loader.extract_info(yt_url, download=False) | |
except youtube_dl.utils.DownloadError as err: | |
raise gr.Error(str(err)) | |
file_length = info["duration_string"] | |
file_h_m_s = file_length.split(":") | |
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s] | |
if len(file_h_m_s) == 1: | |
file_h_m_s.insert(0, 0) | |
if len(file_h_m_s) == 2: | |
file_h_m_s.insert(0, 0) | |
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2] | |
if file_length_s > YT_LENGTH_LIMIT_S: | |
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S)) | |
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s)) | |
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.") | |
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"} | |
with youtube_dl.YoutubeDL(ydl_opts) as ydl: | |
try: | |
ydl.download([yt_url]) | |
except youtube_dl.utils.ExtractorError as err: | |
raise gr.Error(str(err)) | |
def yt_transcribe(yt_url, max_filesize=75.0): | |
html_embed_str = _return_yt_html_embed(yt_url) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
filepath = os.path.join(tmpdirname, "video.mp4") | |
download_yt_audio(yt_url, filepath) | |
audio = AudioSegment.from_file(filepath) | |
audio = audio.set_channels(1).set_frame_rate(16000) # convert to mono 16kHz | |
wav_filepath = os.path.join(tmpdirname, "audio.wav") | |
audio.export(wav_filepath, format="wav") | |
text = get_transcripts(wav_filepath) | |
return html_embed_str, text | |
demo = gr.Blocks() | |
mf_transcribe = gr.Interface( | |
fn=get_transcripts, | |
inputs=[ | |
gr.Audio(sources="microphone", type="filepath") | |
], | |
outputs="text", | |
title="Transcribe Audio", | |
description=( | |
"Transcribe microphone or audio inputs with the click of a button! Demo uses the" | |
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and [NVIDIA NeMo](https://github.com/NVIDIA/NeMo) to transcribe audio files" | |
" of arbitrary length." | |
), | |
allow_flagging="never", | |
) | |
file_transcribe = gr.Interface( | |
fn=get_transcripts, | |
inputs=[ | |
gr.Audio(sources="upload", type="filepath", label="Audio file"), | |
], | |
outputs="text", | |
examples=EXAMPLES, | |
title="Transcribe Audio", | |
description=( | |
"Transcribe microphone or audio inputs with the click of a button! Demo uses the" | |
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and [NVIDIA NeMo](https://github.com/NVIDIA/NeMo) to transcribe audio files" | |
" of arbitrary length." | |
), | |
allow_flagging="never", | |
) | |
""" | |
youtube_transcribe = gr.Interface( | |
fn=yt_transcribe, | |
inputs=[ | |
gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL"), | |
], | |
outputs=["html", "text"], | |
examples=YT_EXAMPLES, | |
title="Transcribe Audio", | |
description=( | |
"Transcribe microphone or audio inputs with the click of a button! Demo uses the" | |
f" checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and [NVIDIA NeMo](https://github.com/NVIDIA/NeMo) to transcribe audio files" | |
" of arbitrary length." | |
), | |
allow_flagging="never", | |
) | |
""" | |
with demo: | |
gr.TabbedInterface( | |
[ | |
mf_transcribe, | |
file_transcribe, | |
#youtube_transcribe | |
], | |
[ | |
"Microphone", | |
"Audio file", | |
#"Youtube Video" | |
] | |
) | |
demo.launch() | |