cetinca commited on
Commit
5fb1d22
1 Parent(s): 10d0128

Draft: Dev package

Browse files
.gitlab-ci.yml CHANGED
@@ -1,14 +1,14 @@
1
  # Official Python language image.
2
- test_py39:
3
- image: python:3.9
4
  before_script:
5
  - python -v
6
  - pip install -r requirements.txt
7
  script:
8
  - pytest --verbose
9
 
10
- test_py38:
11
- image: python:3.8
12
  before_script:
13
  - python -v
14
  - pip install -r requirements.txt
 
1
  # Official Python language image.
2
+ test_py38:
3
+ image: python:3.8
4
  before_script:
5
  - python -v
6
  - pip install -r requirements.txt
7
  script:
8
  - pytest --verbose
9
 
10
+ test_py39:
11
+ image: python:3.9
12
  before_script:
13
  - python -v
14
  - pip install -r requirements.txt
app.py CHANGED
@@ -6,11 +6,11 @@ from fastapi import FastAPI, Request
6
  from fastapi.responses import JSONResponse
7
  from fastapi.staticfiles import StaticFiles
8
  from fastapi.templating import Jinja2Templates
9
- from pydantic import BaseModel
10
-
11
- from modules.nlu import prepare_message_data_for_logging
12
  from mathtext.sentiment import sentiment
13
  from mathtext.text2int import text2int
 
 
 
14
 
15
  app = FastAPI()
16
 
@@ -67,7 +67,7 @@ async def evaluate_user_message_with_nlu_api(request: Request):
67
 
68
  int_api_resp = text2int(message_text)
69
 
70
- if int_api_resp == '32202':
71
  sentiment_api_resp = sentiment(message_text)
72
  # [{'label': 'POSITIVE', 'score': 0.991188645362854}]
73
  sent_data_dict = {'type': 'sentiment', 'data': sentiment_api_resp[0]['label']}
@@ -76,4 +76,5 @@ async def evaluate_user_message_with_nlu_api(request: Request):
76
  prepare_message_data_for_logging(message_data)
77
 
78
  int_data_dict = {'type': 'integer', 'data': int_api_resp}
 
79
  return JSONResponse(content=int_data_dict)
 
6
  from fastapi.responses import JSONResponse
7
  from fastapi.staticfiles import StaticFiles
8
  from fastapi.templating import Jinja2Templates
 
 
 
9
  from mathtext.sentiment import sentiment
10
  from mathtext.text2int import text2int
11
+ from pydantic import BaseModel
12
+
13
+ from mathtext_fastapi.nlu import prepare_message_data_for_logging
14
 
15
  app = FastAPI()
16
 
 
67
 
68
  int_api_resp = text2int(message_text)
69
 
70
+ if int_api_resp == 32202:
71
  sentiment_api_resp = sentiment(message_text)
72
  # [{'label': 'POSITIVE', 'score': 0.991188645362854}]
73
  sent_data_dict = {'type': 'sentiment', 'data': sentiment_api_resp[0]['label']}
 
76
  prepare_message_data_for_logging(message_data)
77
 
78
  int_data_dict = {'type': 'integer', 'data': int_api_resp}
79
+
80
  return JSONResponse(content=int_data_dict)
data/master_test_text2int.csv DELETED
@@ -1,90 +0,0 @@
1
- input,output
2
- fourteen,14
3
- forteen,14
4
- one thousand four hundred ninety two,1492
5
- one thousand ninety two,1092
6
- Fourteen Hundred Ninety-Two,1492
7
- Fourteen Hundred,1400
8
- Ninety nine,99
9
- fifteen thousand five hundred-sixty,15560
10
- three hundred fifty,350
11
- one nine eight five,1985
12
- nineteen eighty-five,1985
13
- oh one,1
14
- six oh 1,601
15
- sex,6
16
- six,6
17
- eight oh,80
18
- eighty,80
19
- ate,8
20
- double eight,88
21
- eight three seven five three O nine,8375309
22
- eight three seven five three oh nine,8375309
23
- eight three seven five three zero nine,8375309
24
- eight three seven five three oh ni-ee-ine,8375309
25
- two eight,28
26
- seven oh eleven,7011
27
- seven elevens,77
28
- seven eleven,711
29
- ninety nine oh five,9905
30
- seven 0 seven 0 seven 0 seven,7070707
31
- 123 hundred,123000
32
- 5 o 5,505
33
- 15 o 5,1505
34
- 15-o 5,1505
35
- 15 o-5,1505
36
- 911-thousand,911000
37
- twenty-two twenty-two,2222
38
- twenty-two twenty-twos,484
39
- four eighty four,484
40
- four eighties,320
41
- four eighties and nine nineties,1130
42
- ninety nine hundred and seventy seven,9977
43
- seven thousands,7000
44
- 2 hundreds,200
45
- 99 thousands and one,99001
46
- "forty-five thousand, seven hundred and nine",45709
47
- eighty eight hundred eighty,8880
48
- a hundred hundred,10000
49
- a hundred thousand,100000
50
- a hundred million,100000000
51
- nineteen ninety nine,1999
52
- forteen twenty seven,1427
53
- seventeen-thousand and seventy two,17072
54
- two hundred and nine,209
55
- two thousand ten,2010
56
- two thousand and ten,2010
57
- twelve million,12000000
58
- 8 billion,8000000000
59
- twenty ten,2010
60
- thirty-two hundred,3200
61
- nine,9
62
- forty two,42
63
- 1 2 three,123
64
- fourtean,14
65
- one tousand four hundred ninty two,1492
66
- Furteen Hundrd Ninety-Too,1492
67
- forrteen,14
68
- sevnteen-thosand and seventy two,17072
69
- ninety nine hundred ad seventy seven,9977
70
- seven thusands,7000
71
- 2 hunreds,200
72
- 99 tousands and one,99001
73
- eighty ate hundred eighty,8880
74
- fourteen Hundred,1400
75
- 8 Bilion,8000000000
76
- one million three thousand one,1003001
77
- four million nine thousand seven,4009007
78
- two million five hundred thousand,2500000
79
- two tousand ten,2010
80
- two thousand teen,2010
81
- tvelve milion,12000000
82
- tventy ten,2010
83
- tirty-twoo hunred,3200
84
- sevn thoosands,7000
85
- five,5
86
- ten,10
87
- one two three and ten,12310
88
- ONE MILLion three hunded and fiv,1000305
89
- "50,500 and six",50506
90
- one_million_and_five,1000005
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{modules → mathtext_fastapi}/__init__.py RENAMED
File without changes
{data → mathtext_fastapi/data}/text2int_results.csv RENAMED
@@ -1,4 +1,6 @@
1
  input,output,text2int,score
 
 
2
  fourteen,14,14,True
3
  forteen,14,14,True
4
  one thousand four hundred ninety two,1492,1492,True
@@ -21,7 +23,7 @@ double eight,88,32202,False
21
  eight three seven five three O nine,8375309,8375329,False
22
  eight three seven five three oh nine,8375309,8375309,True
23
  eight three seven five three zero nine,8375309,8375309,True
24
- eight three seven five three oh ni-ee-ine,8375309,837530619,False
25
  two eight,28,16,False
26
  seven oh eleven,7011,77,False
27
  seven elevens,77,77,True
 
1
  input,output,text2int,score
2
+ notanumber,32202,32202,True
3
+ this is not a number,32202,32202,True
4
  fourteen,14,14,True
5
  forteen,14,14,True
6
  one thousand four hundred ninety two,1492,1492,True
 
23
  eight three seven five three O nine,8375309,8375329,False
24
  eight three seven five three oh nine,8375309,8375309,True
25
  eight three seven five three zero nine,8375309,8375309,True
26
+ eight three seven five three oh ni-ee-ine,8375309,837530611,False
27
  two eight,28,16,False
28
  seven oh eleven,7011,77,False
29
  seven elevens,77,77,True
{modules → mathtext_fastapi}/nlu.py RENAMED
@@ -1,18 +1,13 @@
1
- import environ
2
- import json
3
  import os
4
- import requests
5
-
6
  from datetime import datetime
 
 
7
  from supabase import create_client
8
 
 
9
 
10
- BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
11
- env = environ.Env()
12
- env_path = os.path.join(BASE_DIR, '.env')
13
- environ.Env.read_env('.env')
14
 
15
- SUPA = create_client(env('SUPABASE_URL'), env('SUPABASE_KEY'))
16
 
17
  def log_message_data_through_supabase_api(table_name, log_data):
18
  return SUPA.table(table_name).insert(log_data).execute()
@@ -28,19 +23,19 @@ def prepare_message_data_for_logging(message_data):
28
  # Autogenerated fields: id, created_at, modified_at
29
  }
30
  project_data_log = log_message_data_through_supabase_api('project', project_data)
31
-
32
  contact_data = {
33
- 'project': project_data_log.data[0]['id'], # FK
34
  'original_contact_id': message_data['message']['_vnd']['v1']['chat']['contact_uuid'],
35
  'urn': "",
36
  'language_code': "en",
37
  'contact_inserted_at': format_datetime_in_isoformat(datetime.now())
38
- # Autogenerated fields: id, created_at, modified_at
39
  }
40
  contact_data_log = log_message_data_through_supabase_api('contact', contact_data)
41
 
42
  message_data = {
43
- 'contact': contact_data_log.data[0]['id'], # FK
44
  'original_message_id': message_data['message']['id'],
45
  'text': message_data['message']['text']['body'],
46
  'direction': message_data['message']['_vnd']['v1']['direction'],
@@ -49,6 +44,6 @@ def prepare_message_data_for_logging(message_data):
49
  'message_inserted_at': message_data['message']['_vnd']['v1']['chat']['inserted_at'],
50
  'message_modified_at': message_data['message']['_vnd']['v1']['chat']['updated_at'],
51
  'message_sent_at': format_datetime_in_isoformat(datetime.now())
52
- # Autogenerated fields: created_at, modified_at
53
  }
54
  message_data_log = log_message_data_through_supabase_api('message', message_data)
 
 
 
1
  import os
 
 
2
  from datetime import datetime
3
+
4
+ from dotenv import load_dotenv
5
  from supabase import create_client
6
 
7
+ load_dotenv()
8
 
9
+ SUPA = create_client(os.environ.get('SUPABASE_URL'), os.environ.get('SUPABASE_KEY'))
 
 
 
10
 
 
11
 
12
  def log_message_data_through_supabase_api(table_name, log_data):
13
  return SUPA.table(table_name).insert(log_data).execute()
 
23
  # Autogenerated fields: id, created_at, modified_at
24
  }
25
  project_data_log = log_message_data_through_supabase_api('project', project_data)
26
+
27
  contact_data = {
28
+ 'project': project_data_log.data[0]['id'], # FK
29
  'original_contact_id': message_data['message']['_vnd']['v1']['chat']['contact_uuid'],
30
  'urn': "",
31
  'language_code': "en",
32
  'contact_inserted_at': format_datetime_in_isoformat(datetime.now())
33
+ # Autogenerated fields: id, created_at, modified_at
34
  }
35
  contact_data_log = log_message_data_through_supabase_api('contact', contact_data)
36
 
37
  message_data = {
38
+ 'contact': contact_data_log.data[0]['id'], # FK
39
  'original_message_id': message_data['message']['id'],
40
  'text': message_data['message']['text']['body'],
41
  'direction': message_data['message']['_vnd']['v1']['direction'],
 
44
  'message_inserted_at': message_data['message']['_vnd']['v1']['chat']['inserted_at'],
45
  'message_modified_at': message_data['message']['_vnd']['v1']['chat']['updated_at'],
46
  'message_sent_at': format_datetime_in_isoformat(datetime.now())
47
+ # Autogenerated fields: created_at, modified_at
48
  }
49
  message_data_log = log_message_data_through_supabase_api('message', message_data)
modules/sentiment.py DELETED
@@ -1,8 +0,0 @@
1
- from transformers import pipeline
2
-
3
- sentiment_obj = pipeline(task="sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english")
4
-
5
-
6
- def sentiment(text):
7
- # Returns sentiment value
8
- return sentiment_obj(text)
 
 
 
 
 
 
 
 
 
modules/text2int.py DELETED
@@ -1,192 +0,0 @@
1
- import spacy # noqa
2
-
3
- # import os
4
- # os.environ['KMP_DUPLICATE_LIB_OK']='True'
5
- # import spacy
6
-
7
- # Change this according to what words should be corrected to
8
- SPELL_CORRECT_MIN_CHAR_DIFF = 2
9
-
10
- TOKENS2INT_ERROR_INT = 32202
11
-
12
- ONES = [
13
- "zero", "one", "two", "three", "four", "five", "six", "seven", "eight",
14
- "nine", "ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen",
15
- "sixteen", "seventeen", "eighteen", "nineteen",
16
- ]
17
-
18
- CHAR_MAPPING = {
19
- "-": " ",
20
- "_": " ",
21
- "and": " ",
22
- }
23
- # CHAR_MAPPING.update((str(i), word) for i, word in enumerate([" " + s + " " for s in ONES]))
24
- TOKEN_MAPPING = {
25
- "and": " ",
26
- "oh": "0",
27
- }
28
-
29
-
30
- def find_char_diff(a, b):
31
- # Finds the character difference between two str objects by counting the occurences of every character. Not edit distance.
32
- char_counts_a = {}
33
- char_counts_b = {}
34
- for char in a:
35
- if char in char_counts_a.keys():
36
- char_counts_a[char] += 1
37
- else:
38
- char_counts_a[char] = 1
39
- for char in b:
40
- if char in char_counts_b.keys():
41
- char_counts_b[char] += 1
42
- else:
43
- char_counts_b[char] = 1
44
- char_diff = 0
45
- for i in char_counts_a:
46
- if i in char_counts_b.keys():
47
- char_diff += abs(char_counts_a[i] - char_counts_b[i])
48
- else:
49
- char_diff += char_counts_a[i]
50
- return char_diff
51
-
52
-
53
- def tokenize(text):
54
- text = text.lower()
55
- # print(text)
56
- text = replace_tokens(''.join(i for i in replace_chars(text)).split())
57
- # print(text)
58
- text = [i for i in text if i != ' ']
59
- # print(text)
60
- output = []
61
- for word in text:
62
- # print(word)
63
- output.append(convert_word_to_int(word))
64
- output = [i for i in output if i != ' ']
65
- # print(output)
66
- return output
67
-
68
-
69
- def detokenize(tokens):
70
- return ' '.join(tokens)
71
-
72
-
73
- def replace_tokens(tokens, token_mapping=TOKEN_MAPPING):
74
- return [token_mapping.get(tok, tok) for tok in tokens]
75
-
76
-
77
- def replace_chars(text, char_mapping=CHAR_MAPPING):
78
- return [char_mapping.get(c, c) for c in text]
79
-
80
-
81
- def convert_word_to_int(in_word, numwords={}):
82
- # Converts a single word/str into a single int
83
- tens = ["", "", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"]
84
- scales = ["hundred", "thousand", "million", "billion", "trillion"]
85
- if not numwords:
86
- for idx, word in enumerate(ONES):
87
- numwords[word] = idx
88
- for idx, word in enumerate(tens):
89
- numwords[word] = idx * 10
90
- for idx, word in enumerate(scales):
91
- numwords[word] = 10 ** (idx * 3 or 2)
92
- if in_word in numwords:
93
- # print(in_word)
94
- # print(numwords[in_word])
95
- return numwords[in_word]
96
- try:
97
- int(in_word)
98
- return int(in_word)
99
- except ValueError:
100
- pass
101
- # Spell correction using find_char_diff
102
- char_diffs = [find_char_diff(in_word, i) for i in ONES + tens + scales]
103
- min_char_diff = min(char_diffs)
104
- if min_char_diff <= SPELL_CORRECT_MIN_CHAR_DIFF:
105
- return char_diffs.index(min_char_diff)
106
-
107
-
108
- def tokens2int(tokens):
109
- # Takes a list of tokens and returns a int representation of them
110
- types = []
111
- for i in tokens:
112
- if i <= 9:
113
- types.append(1)
114
-
115
- elif i <= 90:
116
- types.append(2)
117
-
118
- else:
119
- types.append(3)
120
- # print(tokens)
121
- if len(tokens) <= 3:
122
- current = 0
123
- for i, number in enumerate(tokens):
124
- if i != 0 and types[i] < types[i - 1] and current != tokens[i - 1] and types[i - 1] != 3:
125
- current += tokens[i] + tokens[i - 1]
126
- elif current <= tokens[i] and current != 0:
127
- current *= tokens[i]
128
- elif 3 not in types and 1 not in types:
129
- current = int(''.join(str(i) for i in tokens))
130
- break
131
- elif '111' in ''.join(str(i) for i in types) and 2 not in types and 3 not in types:
132
- current = int(''.join(str(i) for i in tokens))
133
- break
134
- else:
135
- current += number
136
-
137
- elif 3 not in types and 2 not in types:
138
- current = int(''.join(str(i) for i in tokens))
139
-
140
- else:
141
- """
142
- double_list = []
143
- current_double = []
144
- double_type_list = []
145
- for i in tokens:
146
- if len(current_double) < 2:
147
- current_double.append(i)
148
- else:
149
- double_list.append(current_double)
150
- current_double = []
151
- current_double = []
152
- for i in types:
153
- if len(current_double) < 2:
154
- current_double.append(i)
155
- else:
156
- double_type_list.append(current_double)
157
- current_double = []
158
- print(double_type_list)
159
- print(double_list)
160
- current = 0
161
- for i, type_double in enumerate(double_type_list):
162
- if len(type_double) == 1:
163
- current += double_list[i][0]
164
- elif type_double[0] == type_double[1]:
165
- current += int(str(double_list[i][0]) + str(double_list[i][1]))
166
- elif type_double[0] > type_double[1]:
167
- current += sum(double_list[i])
168
- elif type_double[0] < type_double[1]:
169
- current += double_list[i][0] * double_list[i][1]
170
- #print(current)
171
- """
172
- count = 0
173
- current = 0
174
- for i, token in enumerate(tokens):
175
- count += 1
176
- if count == 2:
177
- if types[i - 1] == types[i]:
178
- current += int(str(token) + str(tokens[i - 1]))
179
- elif types[i - 1] > types[i]:
180
- current += tokens[i - 1] + token
181
- else:
182
- current += tokens[i - 1] * token
183
- count = 0
184
- elif i == len(tokens) - 1:
185
- current += token
186
-
187
- return current
188
-
189
-
190
- def text2int(text):
191
- # Wraps all of the functions up into one
192
- return tokens2int(tokenize(text))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pyproject.toml ADDED
@@ -0,0 +1,43 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [tool.poetry]
2
+ name = "MathText_FastAPI"
3
+ version = "0.0.1"
4
+ authors = [
5
+ "Sebastian Larsen <[email protected]>",
6
+ "Çetin ÇAKIR <[email protected]>",
7
+ "Hobson Lane <[email protected]>",
8
+ ]
9
+ description = "Natural Language Understanding (text processing) for math symbols, digits, and words with a Gradio user interface and REST API."
10
+ readme = "README.md"
11
+ # requires-python = ">=3.8"
12
+ license = "AGPL-3.0-or-later"
13
+ classifiers = [
14
+ "Programming Language :: Python :: 3",
15
+ "Programming Language :: Python :: 3.8",
16
+ "Programming Language :: Python :: 3.9",
17
+ "License :: OSI Approved :: GNU Affero General Public License v3 or later (AGPLv3+)",
18
+ "Operating System :: OS Independent",
19
+ ]
20
+
21
+
22
+ [tool.poetry.dependencies]
23
+ mathtext = {git = "https://gitlab.com/tangibleai/community/mathtext", rev = "main"}
24
+ fastapi = "0.74.*"
25
+ pydantic = "*"
26
+ python = "^3.8,<3.10"
27
+ requests = "2.27.*"
28
+ sentencepiece = "0.1.*"
29
+ supabase = "*"
30
+ uvicorn = "0.17.*"
31
+
32
+ [tool.poetry.group.dev.dependencies]
33
+ pytest = "^7.2"
34
+
35
+ [build-system]
36
+ requires = ["poetry-core"]
37
+ build-backend = "poetry.core.masonry.api"
38
+
39
+ # [build-system]
40
+ # requires = ["hatchling"]
41
+ # build-backend = "hatchling.build"
42
+
43
+ # repository = "https://gitlab.com/tangibleai/community/mathtext-fastapi"
requirements.txt CHANGED
@@ -1,16 +1,7 @@
 
1
  fastapi==0.74.*
 
2
  requests==2.27.*
3
  sentencepiece==0.1.*
4
- torch==1.12.*
5
- transformers==4.24.*
6
- uvicorn[standard]==0.17.*
7
- pydantic
8
- mathtext @ git+https://gitlab.com/tangibleai/community/mathtext@main
9
- spacy==3.4.*
10
- pandas==1.5.*
11
- matplotlib==3.6.*
12
- pytest==7.2.*
13
- httpx==0.23.*
14
-
15
- django-environ
16
  supabase
 
 
1
+ mathtext @ git+https://gitlab.com/tangibleai/community/mathtext@main
2
  fastapi==0.74.*
3
+ pydantic==1.10.*
4
  requests==2.27.*
5
  sentencepiece==0.1.*
 
 
 
 
 
 
 
 
 
 
 
 
6
  supabase
7
+ uvicorn==0.17.*
tests/test_text2int.py CHANGED
@@ -1,11 +1,16 @@
1
  import unittest
 
2
 
3
  import pandas as pd
4
  from fastapi.testclient import TestClient
5
 
6
  from app import app
7
 
8
- TEST_DATA_FILE = "data/master_test_text2int.csv"
 
 
 
 
9
 
10
  client = TestClient(app)
11
 
@@ -15,6 +20,7 @@ class TestStringMethods(unittest.TestCase):
15
  def setUp(self):
16
  """Creates a fastapi test client"""
17
  self.client = TestClient(app)
 
18
 
19
  def get_response_text2int(self, text):
20
  """Makes a post request to the endpoint"""
@@ -35,15 +41,14 @@ class TestStringMethods(unittest.TestCase):
35
 
36
  def test_acc_score_text2int(self):
37
  """Calculates accuracy score for endpoint"""
38
- df = pd.read_csv(TEST_DATA_FILE)
39
 
40
- df["text2int"] = df["input"].apply(func=self.get_response_text2int)
41
- df["score"] = df[["output", "text2int"]].apply(
42
  lambda row: row[0] == row[1],
43
  axis=1
44
  )
45
- df.to_csv("data/text2int_results.csv", index=False)
46
- acc_score = df["score"].mean().__round__(2)
47
 
48
  self.assertGreaterEqual(acc_score, 0.5, f"Accuracy score: '{acc_score}'. Value is too low!")
49
 
 
1
  import unittest
2
+ from pathlib import Path
3
 
4
  import pandas as pd
5
  from fastapi.testclient import TestClient
6
 
7
  from app import app
8
 
9
+ # The raw file URL has to be used for GitLab.
10
+ URL = "https://gitlab.com/tangibleai/community/mathtext/-/raw/main/mathtext/data/master_test_text2int.csv"
11
+
12
+ DATA_DIR = Path(__file__).parent.parent / "mathtext_fastapi" / "data"
13
+ print(DATA_DIR)
14
 
15
  client = TestClient(app)
16
 
 
20
  def setUp(self):
21
  """Creates a fastapi test client"""
22
  self.client = TestClient(app)
23
+ self.df = pd.read_csv(URL)
24
 
25
  def get_response_text2int(self, text):
26
  """Makes a post request to the endpoint"""
 
41
 
42
  def test_acc_score_text2int(self):
43
  """Calculates accuracy score for endpoint"""
 
44
 
45
+ self.df["text2int"] = self.df["input"].apply(func=self.get_response_text2int)
46
+ self.df["score"] = self.df[["output", "text2int"]].apply(
47
  lambda row: row[0] == row[1],
48
  axis=1
49
  )
50
+ self.df.to_csv(f"{DATA_DIR}/text2int_results.csv", index=False)
51
+ acc_score = self.df["score"].mean().__round__(2)
52
 
53
  self.assertGreaterEqual(acc_score, 0.5, f"Accuracy score: '{acc_score}'. Value is too low!")
54