Spaces:
Runtime error
Runtime error
import gradio as gr | |
import spacy # noqa | |
from transformers import pipeline | |
# import os | |
# os.environ['KMP_DUPLICATE_LIB_OK']='True' | |
# import spacy | |
# Change this according to what words should be corrected to | |
SPELL_CORRECT_MIN_CHAR_DIFF = 2 | |
TOKENS2INT_ERROR_INT = 32202 | |
ONES = [ | |
"zero", "one", "two", "three", "four", "five", "six", "seven", "eight", | |
"nine", "ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen", | |
"sixteen", "seventeen", "eighteen", "nineteen", | |
] | |
CHAR_MAPPING = { | |
"-": " ", | |
"_": " ", | |
"and": " ", | |
} | |
# CHAR_MAPPING.update((str(i), word) for i, word in enumerate([" " + s + " " for s in ONES])) | |
TOKEN_MAPPING = { | |
"and": " ", | |
"oh": "0", | |
} | |
def find_char_diff(a, b): | |
# Finds the character difference between two str objects by counting the occurences of every character. Not edit distance. | |
char_counts_a = {} | |
char_counts_b = {} | |
for char in a: | |
if char in char_counts_a.keys(): | |
char_counts_a[char] += 1 | |
else: | |
char_counts_a[char] = 1 | |
for char in b: | |
if char in char_counts_b.keys(): | |
char_counts_b[char] += 1 | |
else: | |
char_counts_b[char] = 1 | |
char_diff = 0 | |
for i in char_counts_a: | |
if i in char_counts_b.keys(): | |
char_diff += abs(char_counts_a[i] - char_counts_b[i]) | |
else: | |
char_diff += char_counts_a[i] | |
return char_diff | |
def tokenize(text): | |
text = text.lower() | |
# print(text) | |
text = replace_tokens(''.join(i for i in replace_chars(text)).split()) | |
# print(text) | |
text = [i for i in text if i != ' '] | |
# print(text) | |
output = [] | |
for word in text: | |
# print(word) | |
output.append(convert_word_to_int(word)) | |
output = [i for i in output if i != ' '] | |
# print(output) | |
return output | |
def detokenize(tokens): | |
return ' '.join(tokens) | |
def replace_tokens(tokens, token_mapping=TOKEN_MAPPING): | |
return [token_mapping.get(tok, tok) for tok in tokens] | |
def replace_chars(text, char_mapping=CHAR_MAPPING): | |
return [char_mapping.get(c, c) for c in text] | |
def convert_word_to_int(in_word, numwords={}): | |
# Converts a single word/str into a single int | |
tens = ["", "", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"] | |
scales = ["hundred", "thousand", "million", "billion", "trillion"] | |
if not numwords: | |
for idx, word in enumerate(ONES): | |
numwords[word] = idx | |
for idx, word in enumerate(tens): | |
numwords[word] = idx * 10 | |
for idx, word in enumerate(scales): | |
numwords[word] = 10 ** (idx * 3 or 2) | |
if in_word in numwords: | |
# print(in_word) | |
# print(numwords[in_word]) | |
return numwords[in_word] | |
try: | |
int(in_word) | |
return int(in_word) | |
except ValueError: | |
pass | |
# Spell correction using find_char_diff | |
char_diffs = [find_char_diff(in_word, i) for i in ONES + tens + scales] | |
min_char_diff = min(char_diffs) | |
if min_char_diff <= SPELL_CORRECT_MIN_CHAR_DIFF: | |
return char_diffs.index(min_char_diff) | |
def tokens2int(tokens): | |
# Takes a list of tokens and returns a int representation of them | |
types = [] | |
for i in tokens: | |
if i <= 9: | |
types.append(1) | |
elif i <= 90: | |
types.append(2) | |
else: | |
types.append(3) | |
# print(tokens) | |
if len(tokens) <= 3: | |
current = 0 | |
for i, number in enumerate(tokens): | |
if i != 0 and types[i] < types[i - 1] and current != tokens[i - 1] and types[i - 1] != 3: | |
current += tokens[i] + tokens[i - 1] | |
elif current <= tokens[i] and current != 0: | |
current *= tokens[i] | |
elif 3 not in types and 1 not in types: | |
current = int(''.join(str(i) for i in tokens)) | |
break | |
elif '111' in ''.join(str(i) for i in types) and 2 not in types and 3 not in types: | |
current = int(''.join(str(i) for i in tokens)) | |
break | |
else: | |
current += number | |
elif 3 not in types and 2 not in types: | |
current = int(''.join(str(i) for i in tokens)) | |
else: | |
""" | |
double_list = [] | |
current_double = [] | |
double_type_list = [] | |
for i in tokens: | |
if len(current_double) < 2: | |
current_double.append(i) | |
else: | |
double_list.append(current_double) | |
current_double = [] | |
current_double = [] | |
for i in types: | |
if len(current_double) < 2: | |
current_double.append(i) | |
else: | |
double_type_list.append(current_double) | |
current_double = [] | |
print(double_type_list) | |
print(double_list) | |
current = 0 | |
for i, type_double in enumerate(double_type_list): | |
if len(type_double) == 1: | |
current += double_list[i][0] | |
elif type_double[0] == type_double[1]: | |
current += int(str(double_list[i][0]) + str(double_list[i][1])) | |
elif type_double[0] > type_double[1]: | |
current += sum(double_list[i]) | |
elif type_double[0] < type_double[1]: | |
current += double_list[i][0] * double_list[i][1] | |
#print(current) | |
""" | |
count = 0 | |
current = 0 | |
for i, token in enumerate(tokens): | |
count += 1 | |
if count == 2: | |
if types[i - 1] == types[i]: | |
current += int(str(token) + str(tokens[i - 1])) | |
elif types[i - 1] > types[i]: | |
current += tokens[i - 1] + token | |
else: | |
current += tokens[i - 1] * token | |
count = 0 | |
elif i == len(tokens) - 1: | |
current += token | |
return current | |
def text2int(text): | |
# Wraps all of the functions up into one | |
return tokens2int(tokenize(text)) | |
sentiment = pipeline(task="sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english") | |
def get_sentiment(text): | |
return sentiment(text) | |
with gr.Blocks() as html_block: | |
gr.Markdown("# Rori - Mathbot") | |
with gr.Tab("Text to integer"): | |
inputs_text2int = [gr.Text( | |
placeholder="Type a number as text or a sentence", | |
label="Text to process", | |
value="forty two")] | |
outputs_text2int = gr.Textbox(label="Output integer") | |
button_text2int = gr.Button("text2int") | |
button_text2int.click( | |
fn=text2int, | |
inputs=inputs_text2int, | |
outputs=outputs_text2int, | |
api_name="text2int", | |
) | |
examples_text2int = [ | |
"one thousand forty seven", | |
"one hundred", | |
] | |
gr.Examples(examples=examples_text2int, inputs=inputs_text2int) | |
gr.Markdown(r""" | |
## API | |
```python | |
import requests | |
requests.post( | |
url="https://tangibleai-mathtext.hf.space/run/text2int", json={"data": ["one hundred forty five"]} | |
).json() | |
``` | |
Or using `curl`: | |
```bash | |
curl -X POST https://tangibleai-mathtext.hf.space/run/text2int -H 'Content-Type: application/json' -d '{"data": ["one hundred forty five"]}' | |
``` | |
""") | |
with gr.Tab("Sentiment Analysis"): | |
inputs_sentiment = [ | |
gr.Text(placeholder="Type a number as text or a sentence", label="Text to process", | |
value="I really like it!"), | |
] | |
outputs_sentiment = gr.Textbox(label="Sentiment result") | |
button_sentiment = gr.Button("sentiment analysis") | |
button_sentiment.click( | |
get_sentiment, | |
inputs=inputs_sentiment, | |
outputs=outputs_sentiment, | |
api_name="sentiment-analysis" | |
) | |
examples_sentiment = [ | |
["Totally agree!"], | |
["Sorry, I can not accept this!"], | |
] | |
gr.Examples(examples=examples_sentiment, inputs=inputs_sentiment) | |
gr.Markdown(r""" | |
## API | |
```python | |
import requests | |
requests.post( | |
url="https://tangibleai-mathtext.hf.space/run/sentiment-analysis", json={"data": ["You are right!"]} | |
).json() | |
``` | |
Or using `curl`: | |
```bash | |
curl -X POST https://tangibleai-mathtext.hf.space/run/sentiment-analysis -H 'Content-Type: application/json' -d '{"data": ["You are right!"]}' | |
``` | |
""") | |
# interface = gr.Interface(lambda x: x, inputs=["text"], outputs=["text"]) | |
# html_block.input_components = interface.input_components | |
# html_block.output_components = interface.output_components | |
# html_block.examples = None | |
html_block.predict_durations = [] | |
if __name__ == "__main__": | |
html_block.launch() | |