import gradio as gr import spacy # noqa from transformers import pipeline # import os # os.environ['KMP_DUPLICATE_LIB_OK']='True' # import spacy # Change this according to what words should be corrected to SPELL_CORRECT_MIN_CHAR_DIFF = 2 TOKENS2INT_ERROR_INT = 32202 ONES = [ "zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine", "ten", "eleven", "twelve", "thirteen", "fourteen", "fifteen", "sixteen", "seventeen", "eighteen", "nineteen", ] CHAR_MAPPING = { "-": " ", "_": " ", "and": " ", } # CHAR_MAPPING.update((str(i), word) for i, word in enumerate([" " + s + " " for s in ONES])) TOKEN_MAPPING = { "and": " ", "oh": "0", } def find_char_diff(a, b): # Finds the character difference between two str objects by counting the occurences of every character. Not edit distance. char_counts_a = {} char_counts_b = {} for char in a: if char in char_counts_a.keys(): char_counts_a[char] += 1 else: char_counts_a[char] = 1 for char in b: if char in char_counts_b.keys(): char_counts_b[char] += 1 else: char_counts_b[char] = 1 char_diff = 0 for i in char_counts_a: if i in char_counts_b.keys(): char_diff += abs(char_counts_a[i] - char_counts_b[i]) else: char_diff += char_counts_a[i] return char_diff def tokenize(text): text = text.lower() # print(text) text = replace_tokens(''.join(i for i in replace_chars(text)).split()) # print(text) text = [i for i in text if i != ' '] # print(text) output = [] for word in text: # print(word) output.append(convert_word_to_int(word)) output = [i for i in output if i != ' '] # print(output) return output def detokenize(tokens): return ' '.join(tokens) def replace_tokens(tokens, token_mapping=TOKEN_MAPPING): return [token_mapping.get(tok, tok) for tok in tokens] def replace_chars(text, char_mapping=CHAR_MAPPING): return [char_mapping.get(c, c) for c in text] def convert_word_to_int(in_word, numwords={}): # Converts a single word/str into a single int tens = ["", "", "twenty", "thirty", "forty", "fifty", "sixty", "seventy", "eighty", "ninety"] scales = ["hundred", "thousand", "million", "billion", "trillion"] if not numwords: for idx, word in enumerate(ONES): numwords[word] = idx for idx, word in enumerate(tens): numwords[word] = idx * 10 for idx, word in enumerate(scales): numwords[word] = 10 ** (idx * 3 or 2) if in_word in numwords: # print(in_word) # print(numwords[in_word]) return numwords[in_word] try: int(in_word) return int(in_word) except ValueError: pass # Spell correction using find_char_diff char_diffs = [find_char_diff(in_word, i) for i in ONES + tens + scales] min_char_diff = min(char_diffs) if min_char_diff <= SPELL_CORRECT_MIN_CHAR_DIFF: return char_diffs.index(min_char_diff) def tokens2int(tokens): # Takes a list of tokens and returns a int representation of them types = [] for i in tokens: if i <= 9: types.append(1) elif i <= 90: types.append(2) else: types.append(3) # print(tokens) if len(tokens) <= 3: current = 0 for i, number in enumerate(tokens): if i != 0 and types[i] < types[i - 1] and current != tokens[i - 1] and types[i - 1] != 3: current += tokens[i] + tokens[i - 1] elif current <= tokens[i] and current != 0: current *= tokens[i] elif 3 not in types and 1 not in types: current = int(''.join(str(i) for i in tokens)) break elif '111' in ''.join(str(i) for i in types) and 2 not in types and 3 not in types: current = int(''.join(str(i) for i in tokens)) break else: current += number elif 3 not in types and 2 not in types: current = int(''.join(str(i) for i in tokens)) else: """ double_list = [] current_double = [] double_type_list = [] for i in tokens: if len(current_double) < 2: current_double.append(i) else: double_list.append(current_double) current_double = [] current_double = [] for i in types: if len(current_double) < 2: current_double.append(i) else: double_type_list.append(current_double) current_double = [] print(double_type_list) print(double_list) current = 0 for i, type_double in enumerate(double_type_list): if len(type_double) == 1: current += double_list[i][0] elif type_double[0] == type_double[1]: current += int(str(double_list[i][0]) + str(double_list[i][1])) elif type_double[0] > type_double[1]: current += sum(double_list[i]) elif type_double[0] < type_double[1]: current += double_list[i][0] * double_list[i][1] #print(current) """ count = 0 current = 0 for i, token in enumerate(tokens): count += 1 if count == 2: if types[i - 1] == types[i]: current += int(str(token) + str(tokens[i - 1])) elif types[i - 1] > types[i]: current += tokens[i - 1] + token else: current += tokens[i - 1] * token count = 0 elif i == len(tokens) - 1: current += token return current def text2int(text): # Wraps all of the functions up into one return tokens2int(tokenize(text)) sentiment = pipeline(task="sentiment-analysis", model="distilbert-base-uncased-finetuned-sst-2-english") def get_sentiment(text): return sentiment(text) with gr.Blocks() as html_block: gr.Markdown("# Rori - Mathbot") with gr.Tab("Text to integer"): inputs_text2int = [ gr.Text(placeholder="Type a number as text or a sentence", label="Text to process", value="forty two"), ] outputs_text2int = gr.Textbox(label="Output integer") button_text2int = gr.Button("text2int") button_text2int.click( fn=text2int, inputs=inputs_text2int, outputs=outputs_text2int, api_name="text2int", ) examples_text2int = [ "one thousand forty seven", "one hundred", ] gr.Examples(examples=examples_text2int, inputs=inputs_text2int) gr.Markdown(r""" ## API ```python import requests requests.post( url="https://tangibleai-mathtext.hf.space/run/text2int", json={"data": ["one hundred forty five"]} ).json() ``` Or using `curl`: ```bash curl -X POST https://tangibleai-mathtext.hf.space/run/text2int -H 'Content-Type: application/json' -d '{"data": ["one hundred forty five"]}' ``` """) with gr.Tab("Sentiment Analysis"): inputs_sentiment = [ gr.Text(placeholder="Type a number as text or a sentence", label="Text to process", value="I really like it!"), ] outputs_sentiment = gr.Textbox(label="Sentiment result") button_sentiment = gr.Button("sentiment analysis") button_sentiment.click( get_sentiment, inputs=inputs_sentiment, outputs=outputs_sentiment, api_name="sentiment-analysis" ) examples_sentiment = [ ["Totally agree!"], ["Sorry, I can not accept this!"], ] gr.Examples(examples=examples_sentiment, inputs=inputs_sentiment) gr.Markdown(r""" ## API ```python import requests requests.post( url="https://tangibleai-mathtext.hf.space/run/sentiment-analysis", json={"data": ["You are right!"]} ).json() ``` Or using `curl`: ```bash curl -X POST https://tangibleai-mathtext.hf.space/run/sentiment-analysis -H 'Content-Type: application/json' -d '{"data": ["You are right!"]}' ``` """) # interface = gr.Interface(lambda x: x, inputs=["text"], outputs=["text"]) # html_block.input_components = interface.input_components # html_block.output_components = interface.output_components # html_block.examples = None html_block.predict_durations = [] html_block.launch()