|
import os |
|
import math |
|
import transformers |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
import gradio as gr |
|
import sentencepiece |
|
from tokenization_xgen import XgenTokenizer |
|
|
|
title = "Welcome to 🙋🏻♂️Tonic's🌷Tulu Chat!" |
|
description = "[allenai/tulu-2-dpo-7b](https://huggingface.co/allenai/tulu-2-dpo-7b) and larger Tulu-2 models are Instruct Llama Finetunes using the [mistralai/Mistral-7B](https://huggingface.co/mistralai/Mistral-7B-v0.1) recipe. You can use [allenai/tulu-2-13b](https://huggingface.co/allenai/tulu-2-13b) here via API using Gradio by scrolling down and clicking Use 'Via API' or privately by [cloning this space on huggingface](https://huggingface.co/spaces/Tonic1/TuluDemo?duplicate=true) See also the large model here : [allenai/tulu-2-dpo-70b](https://huggingface.co/allenai/tulu-2-dpo-70b) . [Join my active builders' server on discord](https://discord.gg/VqTxc76K3u). Let's build together!." |
|
|
|
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:50' |
|
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") |
|
model_name = "allenai/tulu-2-dpo-13b" |
|
tokenizer = AutoTokenizer.from_pretrained("allenai/tulu-2-dpo-13b") |
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto") |
|
|
|
class TuluChatBot: |
|
def __init__(self, model, tokenizer, system_message="You are 🌷Tulu, an AI language model created by Tonic-AI. You are a cautious assistant. You carefully follow instructions. You are helpful and harmless and you follow ethical guidelines and promote positive behavior."): |
|
self.model = model |
|
self.tokenizer = tokenizer |
|
self.system_message = system_message |
|
|
|
def set_system_message(self, new_system_message): |
|
self.system_message = new_system_message |
|
|
|
def format_prompt(self, user_message): |
|
prompt = f"<|assistant|>\n {self.system_message}\n\n <|user|>{user_message}\n\n<|assistant|>\n" |
|
return prompt |
|
|
|
def predict(self, user_message, temperature, max_new_tokens, top_p, repetition_penalty, do_sample): |
|
prompt = self.format_prompt(user_message) |
|
inputs = self.tokenizer(prompt, return_tensors='pt', add_special_tokens=False) |
|
input_ids = inputs["input_ids"].to(self.model.device) |
|
attention_mask = inputs["attention_mask"].to(self.model.device) |
|
|
|
|
|
output_ids = self.model.generate( |
|
input_ids, |
|
attention_mask=attention_mask, |
|
max_length=input_ids.shape[1] + max_new_tokens, |
|
temperature=temperature, |
|
top_p=top_p, |
|
repetition_penalty=repetition_penalty, |
|
do_sample=do_sample |
|
) |
|
|
|
response = self.tokenizer.decode(output_ids[0], skip_special_tokens=True) |
|
return response |
|
|
|
def gradio_predict(user_message, system_message, max_new_tokens, temperature, top_p, repetition_penalty, do_sample): |
|
Tulu_bot.set_system_message(system_message) |
|
if not do_sample: |
|
max_length = 1269 |
|
temperature = 1.2 |
|
top_p = 0.9 |
|
repetition_penalty = 0.9 |
|
response = Tulu_bot.predict(user_message, temperature, max_new_tokens, top_p, repetition_penalty, do_sample) |
|
return response |
|
|
|
Tulu_bot = TuluChatBot(model, tokenizer) |
|
|
|
|
|
with gr.Blocks() as demo: |
|
theme="ParityError/Anime" |
|
with gr.Row(): |
|
user_message = gr.Textbox(label="Your Message", lines=3) |
|
system_message = gr.Textbox(label="Introduce a Character Here or Set a Scene (system prompt)", lines=2) |
|
with gr.Row(): |
|
do_sample = gr.Checkbox(label="Advanced", value=False) |
|
|
|
|
|
with gr.Accordion("Advanced Settings", open=lambda do_sample: do_sample): |
|
with gr.Row(): |
|
max_new_tokens = gr.Slider(label="Max new tokens", value=1269, minimum=550, maximum=3200, step=1) |
|
temperature = gr.Slider(label="Temperature", value=1.2, minimum=0.05, maximum=4.0, step=0.05) |
|
top_p = gr.Slider(label="Top-p (nucleus sampling)", value=0.90, minimum=0.01, maximum=0.99, step=0.05) |
|
repetition_penalty = gr.Slider(label="Repetition penalty", value=1.9, minimum=1.0, maximum=2.0, step=0.05) |
|
|
|
submit_button = gr.Button("Submit") |
|
output_text = gr.Textbox() |
|
|
|
def process(user_message, system_message, max_new_tokens, temperature, top_p, repetition_penalty, do_sample): |
|
return gradio_predict(user_message, system_message, max_new_tokens, temperature, top_p, repetition_penalty, do_sample) |
|
|
|
submit_button.click( |
|
process, |
|
inputs=[user_message, system_message, max_new_tokens, temperature, top_p, repetition_penalty, do_sample], |
|
outputs=output_text |
|
) |
|
|
|
|
|
demo.launch() |