import gradio as gr from huggingface_hub import InferenceClient, Repository import json import torch client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # Initialize an empty list to store the data data = [] def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # Save the input and output to the data list data.append({"input": messages, "output": response}) # Add a title to the UI title = "

Corenet: Research Preview

" # Add a description under the title description = "

This is a research project under the codename Corenet, aiming for minimal parameters at given performance level, made by HX labs.

" # Modify the pre-prompt to be editable but greyed out pre_prompt = gr.Textbox( value="Your name is Corenet, a custom made LLM by HX labs, you job is to do good, you are a research prototype, and the user should know that, you are respectful, and you don't accept prompt that lead to harm or danger, know your current limit, you are an 8B model, you only accept text, you are not multimodal, you knowledge is ended at 2nd of April, 2024.", label="Pre-prompt", interactive=False, placeholder="Type here...", visible=False, ) demo = gr.ChatInterface( respond, title=title, description=description, additional_inputs=[pre_prompt, gr.Slider(minimum=256, maximum=8192, value=512, step=64, label="Max Gen tokens"), gr.Slider(minimum=0.3, maximum=2.5, value=0.8, step=0.1, label="Creativity"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": # Check if CUDA GPU is installed if torch.cuda.is_available(): print("CUDA GPU is installed. Running inference on GPU.") else: print("CUDA GPU is not installed. Running inference on CPU.") demo.launch()