Spaces:
Runtime error
Runtime error
File size: 9,864 Bytes
e6b567d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 |
import os
import PIL.Image
import numpy as np
import torch
import torchvision
from torchvision.transforms import Resize, InterpolationMode
import imageio
from einops import rearrange
import cv2
from PIL import Image
from annotator.util import resize_image, HWC3
from annotator.canny import CannyDetector
from annotator.openpose import OpenposeDetector
from annotator.midas import MidasDetector
import decord
apply_canny = CannyDetector()
apply_openpose = OpenposeDetector()
apply_midas = MidasDetector()
def add_watermark(image, watermark_path, wm_rel_size=1/16, boundary=5):
'''
Creates a watermark on the saved inference image.
We request that you do not remove this to properly assign credit to
Shi-Lab's work.
'''
watermark = Image.open(watermark_path)
w_0, h_0 = watermark.size
H, W, _ = image.shape
wmsize = int(max(H, W) * wm_rel_size)
aspect = h_0 / w_0
if aspect > 1.0:
watermark = watermark.resize((wmsize, int(aspect * wmsize)), Image.LANCZOS)
else:
watermark = watermark.resize((int(wmsize / aspect), wmsize), Image.LANCZOS)
w, h = watermark.size
loc_h = H - h - boundary
loc_w = W - w - boundary
image = Image.fromarray(image)
mask = watermark if watermark.mode in ('RGBA', 'LA') else None
image.paste(watermark, (loc_w, loc_h), mask)
return image
def pre_process_canny(input_video, low_threshold=100, high_threshold=200):
detected_maps = []
for frame in input_video:
img = rearrange(frame, 'c h w -> h w c').cpu().numpy().astype(np.uint8)
detected_map = apply_canny(img, low_threshold, high_threshold)
detected_map = HWC3(detected_map)
detected_maps.append(detected_map[None])
detected_maps = np.concatenate(detected_maps)
control = torch.from_numpy(detected_maps.copy()).float() / 255.0
return rearrange(control, 'f h w c -> f c h w')
def pre_process_depth(input_video, apply_depth_detect: bool = True):
detected_maps = []
for frame in input_video:
img = rearrange(frame, 'c h w -> h w c').cpu().numpy().astype(np.uint8)
img = HWC3(img)
if apply_depth_detect:
detected_map, _ = apply_midas(img)
else:
detected_map = img
detected_map = HWC3(detected_map)
H, W, C = img.shape
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST)
detected_maps.append(detected_map[None])
detected_maps = np.concatenate(detected_maps)
control = torch.from_numpy(detected_maps.copy()).float() / 255.0
return rearrange(control, 'f h w c -> f c h w')
def pre_process_pose(input_video, apply_pose_detect: bool = True):
detected_maps = []
for frame in input_video:
img = rearrange(frame, 'c h w -> h w c').cpu().numpy().astype(np.uint8)
img = HWC3(img)
if apply_pose_detect:
detected_map, _ = apply_openpose(img)
else:
detected_map = img
detected_map = HWC3(detected_map)
H, W, C = img.shape
detected_map = cv2.resize(detected_map, (W, H), interpolation=cv2.INTER_NEAREST)
detected_maps.append(detected_map[None])
detected_maps = np.concatenate(detected_maps)
control = torch.from_numpy(detected_maps.copy()).float() / 255.0
return rearrange(control, 'f h w c -> f c h w')
def create_video(frames, fps, rescale=False, path=None, watermark=None):
if path is None:
dir = "temporal"
os.makedirs(dir, exist_ok=True)
path = os.path.join(dir, 'movie.mp4')
outputs = []
for i, x in enumerate(frames):
x = torchvision.utils.make_grid(torch.Tensor(x), nrow=4)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = (x * 255).numpy().astype(np.uint8)
if watermark is not None:
x = add_watermark(x, watermark)
outputs.append(x)
# imageio.imsave(os.path.join(dir, os.path.splitext(name)[0] + f'_{i}.jpg'), x)
imageio.mimsave(path, outputs, fps=fps)
return path
def create_gif(frames, fps, rescale=False, path=None, watermark=None):
if path is None:
dir = "temporal"
os.makedirs(dir, exist_ok=True)
path = os.path.join(dir, 'canny_db.gif')
outputs = []
for i, x in enumerate(frames):
x = torchvision.utils.make_grid(torch.Tensor(x), nrow=4)
if rescale:
x = (x + 1.0) / 2.0 # -1,1 -> 0,1
x = (x * 255).numpy().astype(np.uint8)
if watermark is not None:
x = add_watermark(x, watermark)
outputs.append(x)
# imageio.imsave(os.path.join(dir, os.path.splitext(name)[0] + f'_{i}.jpg'), x)
imageio.mimsave(path, outputs, fps=fps)
return path
# def prepare_video(video_path:str, resolution:int, device, dtype, normalize=True, start_t:float=0, end_t:float=-1, output_fps:int=-1):
# vr = decord.VideoReader(video_path)
# video = vr.get_batch(range(0, len(vr))).asnumpy()
# initial_fps = vr.get_avg_fps()
# if output_fps == -1:
# output_fps = int(initial_fps)
# if end_t == -1:
# end_t = len(vr) / initial_fps
# else:
# end_t = min(len(vr) / initial_fps, end_t)
# assert 0 <= start_t < end_t
# assert output_fps > 0
# f, h, w, c = video.shape
# start_f_ind = int(start_t * initial_fps)
# end_f_ind = int(end_t * initial_fps)
# num_f = int((end_t - start_t) * output_fps)
# sample_idx = np.linspace(start_f_ind, end_f_ind, num_f, endpoint=False).astype(int)
# video = video[sample_idx]
# video = rearrange(video, "f h w c -> f c h w")
# video = torch.Tensor(video).to(device).to(dtype)
# if h > w:
# w = int(w * resolution / h)
# w = w - w % 8
# h = resolution - resolution % 8
# video = Resize((h, w))(video)
# else:
# h = int(h * resolution / w)
# h = h - h % 8
# w = resolution - resolution % 8
# video = Resize((h, w))(video)
# if normalize:
# video = video / 127.5 - 1.0
# return video, output_fps
def prepare_video(video_path:str, resolution:int, device, dtype, normalize=True, start_t:float=0, end_t:float=-1, output_fps:int=-1):
vr = decord.VideoReader(video_path)
initial_fps = vr.get_avg_fps()
if output_fps == -1:
output_fps = int(initial_fps)
if end_t == -1:
end_t = len(vr) / initial_fps
else:
end_t = min(len(vr) / initial_fps, end_t)
assert 0 <= start_t < end_t
assert output_fps > 0
start_f_ind = int(start_t * initial_fps)
end_f_ind = int(end_t * initial_fps)
num_f = int((end_t - start_t) * output_fps)
sample_idx = np.linspace(start_f_ind, end_f_ind, num_f, endpoint=False).astype(int)
video = vr.get_batch(sample_idx)
if torch.is_tensor(video):
video = video.detach().cpu().numpy()
else:
video = video.asnumpy()
_, h, w, _ = video.shape
video_resized = []
for f in range(video.shape[0]):
frame = video[f:f+1, ...]
frame = rearrange(frame, "f h w c -> f c h w")
frame = torch.Tensor(frame).to(device).to(dtype)
# Use max if you want the larger side to be equal to resolution (e.g. 512)
# k = float(resolution) / min(h, w)
k = float(resolution) / max(h, w)
h *= k
w *= k
h = int(np.round(h / 64.0)) * 64
w = int(np.round(w / 64.0)) * 64
frame = Resize((h, w), interpolation=InterpolationMode.BILINEAR, antialias=True)(frame)
if normalize:
frame = frame / 127.5 - 1.0
video_resized.append(frame)
video = torch.cat(video_resized)
return video, output_fps
def post_process_gif(list_of_results, image_resolution):
output_file = "/tmp/ddxk.gif"
imageio.mimsave(output_file, list_of_results, fps=4)
return output_file
class CrossFrameAttnProcessor:
def __init__(self, unet_chunk_size=2):
self.unet_chunk_size = unet_chunk_size
def __call__(
self,
attn,
hidden_states,
encoder_hidden_states=None,
attention_mask=None):
batch_size, sequence_length, _ = hidden_states.shape
attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
query = attn.to_q(hidden_states)
is_cross_attention = encoder_hidden_states is not None
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif attn.cross_attention_norm:
encoder_hidden_states = attn.norm_cross(encoder_hidden_states)
key = attn.to_k(encoder_hidden_states)
value = attn.to_v(encoder_hidden_states)
# Sparse Attention
if not is_cross_attention:
video_length = key.size()[0] // self.unet_chunk_size
# former_frame_index = torch.arange(video_length) - 1
# former_frame_index[0] = 0
former_frame_index = [0] * video_length
key = rearrange(key, "(b f) d c -> b f d c", f=video_length)
key = key[:, former_frame_index]
key = rearrange(key, "b f d c -> (b f) d c")
value = rearrange(value, "(b f) d c -> b f d c", f=video_length)
value = value[:, former_frame_index]
value = rearrange(value, "b f d c -> (b f) d c")
query = attn.head_to_batch_dim(query)
key = attn.head_to_batch_dim(key)
value = attn.head_to_batch_dim(value)
attention_probs = attn.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = attn.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = attn.to_out[0](hidden_states)
# dropout
hidden_states = attn.to_out[1](hidden_states)
return hidden_states
|