Spaces:
Build error
Build error
Add application file
Browse files- .gitattributes +1 -0
- README.md +38 -13
- app.py +334 -0
- examples/brushnet/src/test_image.jpg +0 -0
- examples/brushnet/src/test_mask.jpg +0 -0
- requirements.txt +19 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
file filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
@@ -1,13 +1,38 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# BrushNet
|
2 |
+
|
3 |
+
This repository contains the gradio demo of the paper "BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion"
|
4 |
+
|
5 |
+
Keywords: Image Inpainting, Diffusion Models, Image Generation
|
6 |
+
|
7 |
+
> [Xuan Ju](https://github.com/juxuan27)<sup>12</sup>, [Xian Liu](https://alvinliu0.github.io/)<sup>12</sup>, [Xintao Wang](https://xinntao.github.io/)<sup>1*</sup>, [Yuxuan Bian](https://scholar.google.com.hk/citations?user=HzemVzoAAAAJ&hl=zh-CN&oi=ao)<sup>2</sup>, [Ying Shan](https://www.linkedin.com/in/YingShanProfile/)<sup>1</sup>, [Qiang Xu](https://cure-lab.github.io/)<sup>2*</sup><br>
|
8 |
+
> <sup>1</sup>ARC Lab, Tencent PCG <sup>2</sup>The Chinese University of Hong Kong <sup>*</sup>Corresponding Author
|
9 |
+
|
10 |
+
|
11 |
+
<p align="center">
|
12 |
+
<a href="https://tencentarc.github.io/BrushNet/">Project Page</a> |
|
13 |
+
<a href="https://github.com/TencentARC/BrushNet">Code</a> |
|
14 |
+
<a href="https://arxiv.org/abs/2403.06976">Arxiv</a> |
|
15 |
+
<a href="https://forms.gle/9TgMZ8tm49UYsZ9s5">Data</a> |
|
16 |
+
<a href="https://drive.google.com/file/d/1IkEBWcd2Fui2WHcckap4QFPcCI0gkHBh/view">Video</a> |
|
17 |
+
</p>
|
18 |
+
|
19 |
+
|
20 |
+
## 🤝🏼 Cite Us
|
21 |
+
|
22 |
+
```
|
23 |
+
@misc{ju2024brushnet,
|
24 |
+
title={BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion},
|
25 |
+
author={Xuan Ju and Xian Liu and Xintao Wang and Yuxuan Bian and Ying Shan and Qiang Xu},
|
26 |
+
year={2024},
|
27 |
+
eprint={2403.06976},
|
28 |
+
archivePrefix={arXiv},
|
29 |
+
primaryClass={cs.CV}
|
30 |
+
}
|
31 |
+
```
|
32 |
+
|
33 |
+
|
34 |
+
## 💖 Acknowledgement
|
35 |
+
<span id="acknowledgement"></span>
|
36 |
+
|
37 |
+
Our code is modified based on [diffusers](https://github.com/huggingface/diffusers), thanks to all the contributors!
|
38 |
+
|
app.py
ADDED
@@ -0,0 +1,334 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
##!/usr/bin/python3
|
2 |
+
# -*- coding: utf-8 -*-
|
3 |
+
import gradio as gr
|
4 |
+
import os
|
5 |
+
import cv2
|
6 |
+
from PIL import Image
|
7 |
+
import numpy as np
|
8 |
+
from segment_anything import SamPredictor, sam_model_registry
|
9 |
+
import torch
|
10 |
+
from diffusers import StableDiffusionBrushNetPipeline, BrushNetModel, UniPCMultistepScheduler
|
11 |
+
import random
|
12 |
+
|
13 |
+
mobile_sam = sam_model_registry['vit_h'](checkpoint='data/ckpt/sam_vit_h_4b8939.pth').to("cuda")
|
14 |
+
mobile_sam.eval()
|
15 |
+
mobile_predictor = SamPredictor(mobile_sam)
|
16 |
+
colors = [(255, 0, 0), (0, 255, 0)]
|
17 |
+
markers = [1, 5]
|
18 |
+
|
19 |
+
# - - - - - examples - - - - - #
|
20 |
+
image_examples = [
|
21 |
+
["examples/brushnet/src/test_image.jpg", "A beautiful cake on the table", "examples/brushnet/src/test_mask.jpg", 0, []],
|
22 |
+
]
|
23 |
+
|
24 |
+
|
25 |
+
# choose the base model here
|
26 |
+
base_model_path = "data/ckpt/realisticVisionV60B1_v51VAE"
|
27 |
+
# base_model_path = "runwayml/stable-diffusion-v1-5"
|
28 |
+
|
29 |
+
# input brushnet ckpt path
|
30 |
+
brushnet_path = "data/ckpt/segmentation_mask_brushnet_ckpt"
|
31 |
+
|
32 |
+
# input source image / mask image path and the text prompt
|
33 |
+
image_path="examples/brushnet/src/test_image.jpg"
|
34 |
+
mask_path="examples/brushnet/src/test_mask.jpg"
|
35 |
+
caption="A cake on the table."
|
36 |
+
|
37 |
+
# conditioning scale
|
38 |
+
paintingnet_conditioning_scale=1.0
|
39 |
+
|
40 |
+
brushnet = BrushNetModel.from_pretrained(brushnet_path, torch_dtype=torch.float16)
|
41 |
+
pipe = StableDiffusionBrushNetPipeline.from_pretrained(
|
42 |
+
base_model_path, brushnet=brushnet, torch_dtype=torch.float16, low_cpu_mem_usage=False
|
43 |
+
)
|
44 |
+
|
45 |
+
# speed up diffusion process with faster scheduler and memory optimization
|
46 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
47 |
+
# remove following line if xformers is not installed or when using Torch 2.0.
|
48 |
+
# pipe.enable_xformers_memory_efficient_attention()
|
49 |
+
# memory optimization.
|
50 |
+
pipe.enable_model_cpu_offload()
|
51 |
+
|
52 |
+
def resize_image(input_image, resolution):
|
53 |
+
H, W, C = input_image.shape
|
54 |
+
H = float(H)
|
55 |
+
W = float(W)
|
56 |
+
k = float(resolution) / min(H, W)
|
57 |
+
H *= k
|
58 |
+
W *= k
|
59 |
+
H = int(np.round(H / 64.0)) * 64
|
60 |
+
W = int(np.round(W / 64.0)) * 64
|
61 |
+
img = cv2.resize(input_image, (W, H), interpolation=cv2.INTER_LANCZOS4 if k > 1 else cv2.INTER_AREA)
|
62 |
+
return img
|
63 |
+
|
64 |
+
|
65 |
+
def process(input_image,
|
66 |
+
original_image,
|
67 |
+
original_mask,
|
68 |
+
input_mask,
|
69 |
+
selected_points,
|
70 |
+
prompt,
|
71 |
+
negative_prompt,
|
72 |
+
blended,
|
73 |
+
invert_mask,
|
74 |
+
control_strength,
|
75 |
+
seed,
|
76 |
+
randomize_seed,
|
77 |
+
guidance_scale,
|
78 |
+
num_inference_steps):
|
79 |
+
if original_image is None:
|
80 |
+
raise gr.Error('Please upload the input image')
|
81 |
+
if (original_mask is None or len(selected_points)==0) and input_mask is None:
|
82 |
+
raise gr.Error("Please click the region where you hope unchanged/changed, or upload a white-black Mask image")
|
83 |
+
|
84 |
+
# load example image
|
85 |
+
if isinstance(original_image, int):
|
86 |
+
image_name = image_examples[original_image][0]
|
87 |
+
original_image = cv2.imread(image_name)
|
88 |
+
original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
|
89 |
+
|
90 |
+
if input_mask is not None:
|
91 |
+
H,W=original_image.shape[:2]
|
92 |
+
original_mask = cv2.resize(input_mask, (W, H))
|
93 |
+
else:
|
94 |
+
original_mask = np.clip(255 - original_mask, 0, 255).astype(np.uint8)
|
95 |
+
|
96 |
+
if invert_mask:
|
97 |
+
original_mask=255-original_mask
|
98 |
+
|
99 |
+
mask = 1.*(original_mask.sum(-1)>255)[:,:,np.newaxis]
|
100 |
+
masked_image = original_image * (1-mask)
|
101 |
+
|
102 |
+
init_image = Image.fromarray(masked_image.astype(np.uint8)).convert("RGB")
|
103 |
+
mask_image = Image.fromarray(original_mask.astype(np.uint8)).convert("RGB")
|
104 |
+
|
105 |
+
generator = torch.Generator("cuda").manual_seed(random.randint(0,2147483647) if randomize_seed else seed)
|
106 |
+
|
107 |
+
image = pipe(
|
108 |
+
[prompt]*2,
|
109 |
+
init_image,
|
110 |
+
mask_image,
|
111 |
+
num_inference_steps=num_inference_steps,
|
112 |
+
guidance_scale=guidance_scale,
|
113 |
+
generator=generator,
|
114 |
+
brushnet_conditioning_scale=float(control_strength),
|
115 |
+
negative_prompt=[negative_prompt]*2,
|
116 |
+
).images
|
117 |
+
|
118 |
+
if blended:
|
119 |
+
if control_strength<1.0:
|
120 |
+
raise gr.Error('Using blurred blending with control strength less than 1.0 is not allowed')
|
121 |
+
blended_image=[]
|
122 |
+
# blur, you can adjust the parameters for better performance
|
123 |
+
mask = cv2.GaussianBlur(mask*255, (21, 21), 0)/255
|
124 |
+
mask = mask[:,:,np.newaxis]
|
125 |
+
for image_i in image:
|
126 |
+
image_np=np.array(image_i)
|
127 |
+
image_pasted=original_image * (1-mask) + image_np*mask
|
128 |
+
|
129 |
+
image_pasted=image_pasted.astype(image_np.dtype)
|
130 |
+
blended_image.append(Image.fromarray(image_pasted))
|
131 |
+
|
132 |
+
image=blended_image
|
133 |
+
|
134 |
+
return image
|
135 |
+
|
136 |
+
block = gr.Blocks(
|
137 |
+
theme=gr.themes.Soft(
|
138 |
+
radius_size=gr.themes.sizes.radius_none,
|
139 |
+
text_size=gr.themes.sizes.text_md
|
140 |
+
)
|
141 |
+
).queue()
|
142 |
+
with block:
|
143 |
+
with gr.Row():
|
144 |
+
with gr.Column():
|
145 |
+
|
146 |
+
gr.HTML(f"""
|
147 |
+
<div style="text-align: center;">
|
148 |
+
<h1>BrushNet: A Plug-and-Play Image Inpainting Model with Decomposed Dual-Branch Diffusion</h1>
|
149 |
+
<div style="display: flex; justify-content: center; align-items: center; text-align: center;">
|
150 |
+
<a href=""></a>
|
151 |
+
<a href='https://tencentarc.github.io/BrushNet/'><img src='https://img.shields.io/badge/Project_Page-BrushNet-green' alt='Project Page'></a>
|
152 |
+
<a href='https://arxiv.org/abs/2403.06976'><img src='https://img.shields.io/badge/Paper-Arxiv-blue'></a>
|
153 |
+
</div>
|
154 |
+
</br>
|
155 |
+
</div>
|
156 |
+
""")
|
157 |
+
|
158 |
+
|
159 |
+
with gr.Accordion(label="🧭 Instructions:", open=True, elem_id="accordion"):
|
160 |
+
with gr.Row(equal_height=True):
|
161 |
+
gr.Markdown("""
|
162 |
+
- ⭐️ <b>step1: </b>Upload or select one image from Example
|
163 |
+
- ⭐️ <b>step2: </b>Click on Input-image to select the object to be retained (or upload a white-black Mask image, in which white color indicates the region you want to keep unchanged). You can tick the 'Invert Mask' box to switch region unchanged and change.
|
164 |
+
- ⭐️ <b>step3: </b>Input prompt for generating new contents
|
165 |
+
- ⭐️ <b>step4: </b>Click Run button
|
166 |
+
""")
|
167 |
+
with gr.Row():
|
168 |
+
with gr.Column():
|
169 |
+
with gr.Column(elem_id="Input"):
|
170 |
+
with gr.Row():
|
171 |
+
with gr.Tabs(elem_classes=["feedback"]):
|
172 |
+
with gr.TabItem("Input Image"):
|
173 |
+
input_image = gr.Image(type="numpy", label="input",scale=2, height=640)
|
174 |
+
original_image = gr.State(value=None,label="index")
|
175 |
+
original_mask = gr.State(value=None)
|
176 |
+
selected_points = gr.State([],label="select points")
|
177 |
+
with gr.Row(elem_id="Seg"):
|
178 |
+
radio = gr.Radio(['foreground', 'background'], label='Click to seg: ', value='foreground',scale=2)
|
179 |
+
undo_button = gr.Button('Undo seg', elem_id="btnSEG",scale=1)
|
180 |
+
prompt = gr.Textbox(label="Prompt", placeholder="Please input your prompt",value='',lines=1)
|
181 |
+
negative_prompt = gr.Text(
|
182 |
+
label="Negative Prompt",
|
183 |
+
max_lines=5,
|
184 |
+
placeholder="Please input your negative prompt",
|
185 |
+
value='ugly, low quality',lines=1
|
186 |
+
)
|
187 |
+
with gr.Group():
|
188 |
+
with gr.Row():
|
189 |
+
blending = gr.Checkbox(label="Blurred Blending", value=False)
|
190 |
+
invert_mask = gr.Checkbox(label="Invert Mask", value=True)
|
191 |
+
run_button = gr.Button("Run",elem_id="btn")
|
192 |
+
|
193 |
+
with gr.Accordion("More input params (highly-recommended)", open=False, elem_id="accordion1"):
|
194 |
+
control_strength = gr.Slider(
|
195 |
+
label="Control Strength: ", show_label=True, minimum=0, maximum=1.1, value=1, step=0.01
|
196 |
+
)
|
197 |
+
with gr.Group():
|
198 |
+
seed = gr.Slider(
|
199 |
+
label="Seed: ", minimum=0, maximum=2147483647, step=1, value=551793204
|
200 |
+
)
|
201 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=False)
|
202 |
+
|
203 |
+
with gr.Group():
|
204 |
+
with gr.Row():
|
205 |
+
guidance_scale = gr.Slider(
|
206 |
+
label="Guidance scale",
|
207 |
+
minimum=1,
|
208 |
+
maximum=12,
|
209 |
+
step=0.1,
|
210 |
+
value=12,
|
211 |
+
)
|
212 |
+
num_inference_steps = gr.Slider(
|
213 |
+
label="Number of inference steps",
|
214 |
+
minimum=1,
|
215 |
+
maximum=50,
|
216 |
+
step=1,
|
217 |
+
value=50,
|
218 |
+
)
|
219 |
+
with gr.Row(elem_id="Image"):
|
220 |
+
with gr.Tabs(elem_classes=["feedback1"]):
|
221 |
+
with gr.TabItem("User-specified Mask Image (Optional)"):
|
222 |
+
input_mask = gr.Image(type="numpy", label="Mask Image", height=640)
|
223 |
+
|
224 |
+
with gr.Column():
|
225 |
+
with gr.Tabs(elem_classes=["feedback"]):
|
226 |
+
with gr.TabItem("Outputs"):
|
227 |
+
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery", preview=True)
|
228 |
+
with gr.Row():
|
229 |
+
def process_example(input_image, prompt, input_mask, original_image, selected_points): #
|
230 |
+
return input_image, prompt, input_mask, original_image, []
|
231 |
+
example = gr.Examples(
|
232 |
+
label="Input Example",
|
233 |
+
examples=image_examples,
|
234 |
+
inputs=[input_image, prompt, input_mask, original_image, selected_points],
|
235 |
+
outputs=[input_image, prompt, input_mask, original_image, selected_points],
|
236 |
+
fn=process_example,
|
237 |
+
run_on_click=True,
|
238 |
+
examples_per_page=10
|
239 |
+
)
|
240 |
+
|
241 |
+
# once user upload an image, the original image is stored in `original_image`
|
242 |
+
def store_img(img):
|
243 |
+
# image upload is too slow
|
244 |
+
if min(img.shape[0], img.shape[1]) > 512:
|
245 |
+
img = resize_image(img, 512)
|
246 |
+
if max(img.shape[0], img.shape[1])*1.0/min(img.shape[0], img.shape[1])>2.0:
|
247 |
+
raise gr.Error('image aspect ratio cannot be larger than 2.0')
|
248 |
+
return img, img, [], None # when new image is uploaded, `selected_points` should be empty
|
249 |
+
|
250 |
+
input_image.upload(
|
251 |
+
store_img,
|
252 |
+
[input_image],
|
253 |
+
[input_image, original_image, selected_points]
|
254 |
+
)
|
255 |
+
|
256 |
+
# user click the image to get points, and show the points on the image
|
257 |
+
def segmentation(img, sel_pix):
|
258 |
+
# online show seg mask
|
259 |
+
points = []
|
260 |
+
labels = []
|
261 |
+
for p, l in sel_pix:
|
262 |
+
points.append(p)
|
263 |
+
labels.append(l)
|
264 |
+
mobile_predictor.set_image(img if isinstance(img, np.ndarray) else np.array(img))
|
265 |
+
with torch.no_grad():
|
266 |
+
masks, _, _ = mobile_predictor.predict(point_coords=np.array(points), point_labels=np.array(labels), multimask_output=False)
|
267 |
+
|
268 |
+
output_mask = np.ones((masks.shape[1], masks.shape[2], 3))*255
|
269 |
+
for i in range(3):
|
270 |
+
output_mask[masks[0] == True, i] = 0.0
|
271 |
+
|
272 |
+
mask_all = np.ones((masks.shape[1], masks.shape[2], 3))
|
273 |
+
color_mask = np.random.random((1, 3)).tolist()[0]
|
274 |
+
for i in range(3):
|
275 |
+
mask_all[masks[0] == True, i] = color_mask[i]
|
276 |
+
masked_img = img / 255 * 0.3 + mask_all * 0.7
|
277 |
+
masked_img = masked_img*255
|
278 |
+
## draw points
|
279 |
+
for point, label in sel_pix:
|
280 |
+
cv2.drawMarker(masked_img, point, colors[label], markerType=markers[label], markerSize=20, thickness=5)
|
281 |
+
return masked_img, output_mask
|
282 |
+
|
283 |
+
def get_point(img, sel_pix, point_type, evt: gr.SelectData):
|
284 |
+
if point_type == 'foreground':
|
285 |
+
sel_pix.append((evt.index, 1)) # append the foreground_point
|
286 |
+
elif point_type == 'background':
|
287 |
+
sel_pix.append((evt.index, 0)) # append the background_point
|
288 |
+
else:
|
289 |
+
sel_pix.append((evt.index, 1)) # default foreground_point
|
290 |
+
|
291 |
+
if isinstance(img, int):
|
292 |
+
image_name = image_examples[img][0]
|
293 |
+
img = cv2.imread(image_name)
|
294 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
295 |
+
|
296 |
+
# online show seg mask
|
297 |
+
masked_img, output_mask = segmentation(img, sel_pix)
|
298 |
+
return masked_img.astype(np.uint8), output_mask
|
299 |
+
|
300 |
+
input_image.select(
|
301 |
+
get_point,
|
302 |
+
[original_image, selected_points, radio],
|
303 |
+
[input_image, original_mask],
|
304 |
+
)
|
305 |
+
|
306 |
+
# undo the selected point
|
307 |
+
def undo_points(orig_img, sel_pix):
|
308 |
+
# draw points
|
309 |
+
output_mask = None
|
310 |
+
if len(sel_pix) != 0:
|
311 |
+
if isinstance(orig_img, int): # if orig_img is int, the image if select from examples
|
312 |
+
temp = cv2.imread(image_examples[orig_img][0])
|
313 |
+
temp = cv2.cvtColor(temp, cv2.COLOR_BGR2RGB)
|
314 |
+
else:
|
315 |
+
temp = orig_img.copy()
|
316 |
+
sel_pix.pop()
|
317 |
+
# online show seg mask
|
318 |
+
if len(sel_pix) !=0:
|
319 |
+
temp, output_mask = segmentation(temp, sel_pix)
|
320 |
+
return temp.astype(np.uint8), output_mask
|
321 |
+
else:
|
322 |
+
gr.Error("Nothing to Undo")
|
323 |
+
|
324 |
+
undo_button.click(
|
325 |
+
undo_points,
|
326 |
+
[original_image, selected_points],
|
327 |
+
[input_image, original_mask]
|
328 |
+
)
|
329 |
+
|
330 |
+
ips=[input_image, original_image, original_mask, input_mask, selected_points, prompt, negative_prompt, blending, invert_mask, control_strength, seed, randomize_seed, guidance_scale, num_inference_steps]
|
331 |
+
run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
|
332 |
+
|
333 |
+
|
334 |
+
block.launch()
|
examples/brushnet/src/test_image.jpg
ADDED
examples/brushnet/src/test_mask.jpg
ADDED
requirements.txt
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch==1.12.1+cu116
|
2 |
+
torchvision==0.13.1+cu116
|
3 |
+
torchaudio==0.12.1
|
4 |
+
transformers>=4.25.1
|
5 |
+
ftfy
|
6 |
+
tensorboard
|
7 |
+
datasets
|
8 |
+
Pillow==9.5.0
|
9 |
+
opencv-python
|
10 |
+
imgaug
|
11 |
+
accelerate==0.20.3
|
12 |
+
image-reward
|
13 |
+
hpsv2
|
14 |
+
torchmetrics
|
15 |
+
open-clip-torch
|
16 |
+
clip
|
17 |
+
gradio==3.50.0
|
18 |
+
segment_anything
|
19 |
+
git+https://github.com/TencentARC/BrushNet.git
|