File size: 19,114 Bytes
3cb3d90
 
 
 
10240e0
3cb3d90
 
 
 
10240e0
3cb3d90
 
 
 
 
 
 
13c1c2e
 
 
 
3cb3d90
ff883a7
3cb3d90
 
 
 
 
 
 
 
 
 
 
 
 
 
ff883a7
3cb3d90
ff883a7
3cb3d90
 
5c74464
3cb3d90
 
 
 
5c74464
 
3cb3d90
 
ff883a7
 
 
 
 
 
 
 
 
 
863eac9
3cb3d90
ff883a7
 
 
 
 
 
 
 
3cb3d90
13c1c2e
 
3cb3d90
13c1c2e
 
 
ff883a7
3cb3d90
 
13c1c2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cb3d90
13c1c2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff883a7
3cb3d90
 
13c1c2e
 
3cb3d90
 
 
 
13c1c2e
 
 
 
 
 
ff883a7
13c1c2e
 
ff883a7
13c1c2e
3cb3d90
 
eabdb1c
ff883a7
3cb3d90
eabdb1c
 
 
10240e0
ff883a7
3cb3d90
eabdb1c
 
 
 
 
 
ff883a7
 
eabdb1c
 
 
 
 
 
 
 
ff883a7
eabdb1c
13c1c2e
3cb3d90
eabdb1c
 
3cb3d90
ff883a7
 
 
13c1c2e
ff883a7
13c1c2e
 
 
 
 
 
ff883a7
13c1c2e
 
 
 
3cb3d90
 
 
 
 
ff883a7
3cb3d90
ff883a7
 
 
3cb3d90
 
 
13c1c2e
3cb3d90
2461d7d
 
3cb3d90
eabdb1c
 
 
10240e0
 
eabdb1c
10240e0
13c1c2e
 
3cb3d90
 
 
13c1c2e
3cb3d90
 
2461d7d
3cb3d90
10240e0
5c74464
eabdb1c
10240e0
 
eabdb1c
 
2461d7d
10240e0
3cb3d90
 
ff883a7
eabdb1c
3cb3d90
5c74464
 
 
 
 
 
ff883a7
13c1c2e
ff883a7
13c1c2e
 
 
 
 
3cb3d90
13c1c2e
 
 
ff883a7
 
3cb3d90
 
ff883a7
3cb3d90
 
 
 
 
 
eabdb1c
3cb3d90
13c1c2e
 
 
 
ff883a7
3cb3d90
 
 
 
 
 
5c74464
 
 
 
13c1c2e
 
 
 
 
 
 
 
 
 
 
 
 
 
5c74464
 
ff883a7
 
 
 
 
 
 
5c74464
 
 
 
 
 
 
 
 
 
 
 
 
eabdb1c
 
 
ff883a7
 
 
 
13c1c2e
 
 
 
 
3cb3d90
 
13c1c2e
10240e0
3cb3d90
 
13c1c2e
 
 
 
5c74464
13c1c2e
5c74464
13c1c2e
5c74464
eabdb1c
5c74464
 
 
ff883a7
13c1c2e
 
 
ff883a7
3cb3d90
10240e0
3cb3d90
10240e0
3cb3d90
 
 
 
ff883a7
3cb3d90
ff883a7
3cb3d90
 
 
 
eabdb1c
3cb3d90
eabdb1c
3cb3d90
 
 
 
ff883a7
3cb3d90
ff883a7
3cb3d90
 
 
 
ff883a7
 
 
 
3cb3d90
 
ff883a7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12dc496
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
from io import BytesIO
import string
import gradio as gr
import requests
from caption_anything import CaptionAnything
import torch
import json
import sys
import argparse
from caption_anything import parse_augment
import numpy as np
import PIL.ImageDraw as ImageDraw
from image_editing_utils import create_bubble_frame
import copy
from tools import mask_painter
from PIL import Image
import os
from captioner import build_captioner
from segment_anything import sam_model_registry
from text_refiner import build_text_refiner
from segmenter import build_segmenter


def download_checkpoint(url, folder, filename):
    os.makedirs(folder, exist_ok=True)
    filepath = os.path.join(folder, filename)

    if not os.path.exists(filepath):
        response = requests.get(url, stream=True)
        with open(filepath, "wb") as f:
            for chunk in response.iter_content(chunk_size=8192):
                if chunk:
                    f.write(chunk)

    return filepath


title = """<p><h1 align="center">Caption-Anything</h1></p>
"""
description = """<p>Gradio demo for Caption Anything, image to dense captioning generation with various language styles. To use it, simply upload your image, or click one of the examples to load them. Code: https://github.com/ttengwang/Caption-Anything <a href="https://huggingface.co/spaces/TencentARC/Caption-Anything?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>"""

examples = [
    ["test_img/img35.webp"],
    ["test_img/img2.jpg"],
    ["test_img/img5.jpg"],
    ["test_img/img12.jpg"],
    ["test_img/img14.jpg"],
    ["test_img/img0.png"],
    ["test_img/img1.jpg"],
]

seg_model_map = {
    'base': 'vit_b',
    'large': 'vit_l',
    'huge': 'vit_h'
}
ckpt_url_map = {
    'vit_b': 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth',
    'vit_l': 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth',
    'vit_h': 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth'
}
os.makedirs('result', exist_ok=True)
args = parse_augment()

checkpoint_url = ckpt_url_map[seg_model_map[args.segmenter]]
folder = "segmenter"
filename = os.path.basename(checkpoint_url)
args.segmenter_checkpoint = os.path.join(folder, filename)

download_checkpoint(checkpoint_url, folder, filename)

# args.device = 'cuda:5'
# args.disable_gpt = True
# args.enable_reduce_tokens = False
# args.port=20322
# args.captioner = 'blip'
# args.regular_box = True
shared_captioner = build_captioner(args.captioner, args.device, args)
shared_sam_model = sam_model_registry[seg_model_map[args.segmenter]](checkpoint=args.segmenter_checkpoint).to(args.device)


def build_caption_anything_with_models(args, api_key="", captioner=None, sam_model=None, text_refiner=None, session_id=None):
    segmenter = build_segmenter(args.segmenter, args.device, args, model=sam_model)
    captioner = captioner
    if session_id is not None:
        print('Init caption anything for session {}'.format(session_id))
    return CaptionAnything(args, api_key, captioner=captioner, segmenter=segmenter, text_refiner=text_refiner)


def init_openai_api_key(api_key=""):
    text_refiner = None
    if api_key and len(api_key) > 30:
        try:
            text_refiner = build_text_refiner(args.text_refiner, args.device, args, api_key)
            text_refiner.llm('hi') # test
        except:
            text_refiner = None
    openai_available = text_refiner is not None
    return gr.update(visible = openai_available), gr.update(visible = openai_available), gr.update(visible = openai_available), gr.update(visible = True), gr.update(visible = True), gr.update(visible = True), text_refiner


def get_prompt(chat_input, click_state, click_mode):
    inputs = json.loads(chat_input)
    if click_mode == 'Continuous':
        points = click_state[0]
        labels = click_state[1]
        for input in inputs:
            points.append(input[:2])
            labels.append(input[2])
    elif click_mode == 'Single':
        points = []
        labels = []
        for input in inputs:
            points.append(input[:2])
            labels.append(input[2])
        click_state[0] = points
        click_state[1] = labels
    else:
        raise NotImplementedError

    prompt = {
        "prompt_type":["click"],
        "input_point":click_state[0],
        "input_label":click_state[1],
        "multimask_output":"True",
    }
    return prompt

def update_click_state(click_state, caption, click_mode):
    if click_mode == 'Continuous':
        click_state[2].append(caption)
    elif click_mode == 'Single':
        click_state[2] = [caption]
    else:
        raise NotImplementedError


def chat_with_points(chat_input, click_state, chat_state, state, text_refiner, img_caption):
    if text_refiner is None:
        response = "Text refiner is not initilzed, please input openai api key."
        state = state + [(chat_input, response)]
        return state, state, chat_state

    points, labels, captions = click_state
    # point_chat_prompt = "I want you act as a chat bot in terms of image. I will give you some points (w, h) in the image and tell you what happed on the point in natural language. Note that (0, 0) refers to the top-left corner of the image, w refers to the width and h refers the height. You should chat with me based on the fact in the image instead of imagination. Now I tell you the points with their visual description:\n{points_with_caps}\nNow begin chatting!"
    suffix = '\nHuman: {chat_input}\nAI: '
    qa_template = '\nHuman: {q}\nAI: {a}'
    # # "The image is of width {width} and height {height}." 
    point_chat_prompt = "I am an AI trained to chat with you about an image. I am greate at what is going on in any image based on the image information your provide. The overall image description is \"{img_caption}\". You will also provide me objects in the image in details, i.e., their location and visual descriptions. Here are the locations and descriptions of events that happen in the image: {points_with_caps} \n Now, let's chat!"
    prev_visual_context = ""
    pos_points = []
    pos_captions = []
    for i in range(len(points)):
        if labels[i] == 1:
            pos_points.append(f"({points[i][0]}, {points[i][0]})")
            pos_captions.append(captions[i])
            prev_visual_context = prev_visual_context + '\n' + 'There is an event described as  \"{}\" locating at {}'.format(pos_captions[-1], ', '.join(pos_points))

    context_length_thres = 500
    prev_history = ""
    for i in range(len(chat_state)):
        q, a = chat_state[i]
        if len(prev_history) < context_length_thres:
            prev_history = prev_history + qa_template.format(**{"q": q, "a": a})
        else:
            break
    chat_prompt = point_chat_prompt.format(**{"img_caption":img_caption,"points_with_caps": prev_visual_context}) + prev_history + suffix.format(**{"chat_input": chat_input})
    print('\nchat_prompt: ', chat_prompt)
    response = text_refiner.llm(chat_prompt)
    state = state + [(chat_input, response)]
    chat_state = chat_state + [(chat_input, response)]
    return state, state, chat_state

def inference_seg_cap(image_input, point_prompt, click_mode, enable_wiki, language, sentiment, factuality,
                      length, image_embedding, state, click_state, original_size, input_size, text_refiner, evt:gr.SelectData):

    model = build_caption_anything_with_models(
        args,
        api_key="",
        captioner=shared_captioner,
        sam_model=shared_sam_model,
        text_refiner=text_refiner,
        session_id=iface.app_id
    )

    model.segmenter.image_embedding = image_embedding
    model.segmenter.predictor.original_size = original_size
    model.segmenter.predictor.input_size = input_size
    model.segmenter.predictor.is_image_set = True

    if point_prompt == 'Positive':
        coordinate = "[[{}, {}, 1]]".format(str(evt.index[0]), str(evt.index[1]))
    else:
        coordinate = "[[{}, {}, 0]]".format(str(evt.index[0]), str(evt.index[1]))

    controls = {'length': length,
                'sentiment': sentiment,
                'factuality': factuality,
                'language': language}

    # click_coordinate = "[[{}, {}, 1]]".format(str(evt.index[0]), str(evt.index[1])) 
    # chat_input = click_coordinate
    prompt = get_prompt(coordinate, click_state, click_mode)
    print('prompt: ', prompt, 'controls: ', controls)
    input_points = prompt['input_point']
    input_labels = prompt['input_label']

    enable_wiki = True if enable_wiki in ['True', 'TRUE', 'true', True, 'Yes', 'YES', 'yes'] else False
    out = model.inference(image_input, prompt, controls, disable_gpt=True, enable_wiki=enable_wiki)
    state = state + [("Image point: {}, Input label: {}".format(prompt["input_point"], prompt["input_label"]), None)]
    # for k, v in out['generated_captions'].items():
    #     state = state + [(f'{k}: {v}', None)]
    state = state + [(None, "raw_caption: {}".format(out['generated_captions']['raw_caption']))]
    wiki = out['generated_captions'].get('wiki', "")

    update_click_state(click_state, out['generated_captions']['raw_caption'], click_mode)
    text = out['generated_captions']['raw_caption']
    # draw = ImageDraw.Draw(image_input)
    # draw.text((evt.index[0], evt.index[1]), text, textcolor=(0,0,255), text_size=120)
    input_mask = np.array(out['mask'].convert('P'))
    image_input = mask_painter(np.array(image_input), input_mask)
    origin_image_input = image_input
    image_input = create_bubble_frame(image_input, text, (evt.index[0], evt.index[1]), input_mask, input_points=input_points, input_labels=input_labels)

    yield state, state, click_state, chat_input, image_input, wiki
    if not args.disable_gpt and model.text_refiner:
        refined_caption = model.text_refiner.inference(query=text, controls=controls, context=out['context_captions'], enable_wiki=enable_wiki)
        # new_cap = 'Original: ' + text + '. Refined: ' + refined_caption['caption']
        new_cap = refined_caption['caption']
        wiki = refined_caption['wiki']
        state = state + [(None, f"caption: {new_cap}")]
        refined_image_input = create_bubble_frame(origin_image_input, new_cap, (evt.index[0], evt.index[1]), input_mask, input_points=input_points, input_labels=input_labels)
        yield state, state, click_state, chat_input, refined_image_input, wiki


def upload_callback(image_input, state):    
    chat_state = []
    click_state = [[], [], []]
    res = 1024
    width, height = image_input.size
    ratio = min(1.0 * res / max(width, height), 1.0)
    if ratio < 1.0:
        image_input = image_input.resize((int(width * ratio), int(height * ratio)))
        print('Scaling input image to {}'.format(image_input.size))
    state = [] + [(None, 'Image size: ' + str(image_input.size))]
    model = build_caption_anything_with_models(
        args,
        api_key="",
        captioner=shared_captioner,
        sam_model=shared_sam_model,
        session_id=iface.app_id
    )
    model.segmenter.set_image(image_input)
    image_embedding = model.segmenter.image_embedding
    original_size = model.segmenter.predictor.original_size
    input_size = model.segmenter.predictor.input_size
    img_caption, _ = model.captioner.inference_seg(image_input)
    return state, state, chat_state, image_input, click_state, image_input, image_embedding, original_size, input_size, img_caption

with gr.Blocks(
        css='''
    #image_upload{min-height:400px}
    #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 600px}
    '''
) as iface:
    state = gr.State([])
    click_state = gr.State([[],[],[]])
    chat_state = gr.State([])
    origin_image = gr.State(None)
    image_embedding = gr.State(None)
    text_refiner = gr.State(None)
    original_size = gr.State(None)
    input_size = gr.State(None)
    img_caption = gr.State(None)

    gr.Markdown(title)
    gr.Markdown(description)

    with gr.Row():
        with gr.Column(scale=1.0):
            with gr.Column(visible=False) as modules_not_need_gpt:
                image_input = gr.Image(type="pil", interactive=True, elem_id="image_upload")
                example_image = gr.Image(type="pil", interactive=False, visible=False)
                with gr.Row(scale=1.0):
                    with gr.Row(scale=0.4):
                        point_prompt = gr.Radio(
                            choices=["Positive",  "Negative"],
                            value="Positive",
                            label="Point Prompt",
                            interactive=True)
                        click_mode = gr.Radio(
                            choices=["Continuous",  "Single"],
                            value="Continuous",
                            label="Clicking Mode",
                            interactive=True)
                    with gr.Row(scale=0.4):
                        clear_button_clike = gr.Button(value="Clear Clicks", interactive=True)
                        clear_button_image = gr.Button(value="Clear Image", interactive=True)
            with gr.Column(visible=False) as modules_need_gpt:
                with gr.Row(scale=1.0):
                    language = gr.Dropdown(['English', 'Chinese', 'French', "Spanish", "Arabic", "Portuguese", "Cantonese"], value="English", label="Language", interactive=True)
                    sentiment = gr.Radio(
                        choices=["Positive", "Natural", "Negative"],
                        value="Natural",
                        label="Sentiment",
                        interactive=True,
                    )
                with gr.Row(scale=1.0):
                    factuality = gr.Radio(
                        choices=["Factual", "Imagination"],
                        value="Factual",
                        label="Factuality",
                        interactive=True,
                    )
                    length = gr.Slider(
                        minimum=10,
                        maximum=80,
                        value=10,
                        step=1,
                        interactive=True,
                        label="Generated Caption Length",
                    )
                    enable_wiki = gr.Radio(
                        choices=["Yes",  "No"],
                        value="No",
                        label="Enable Wiki",
                        interactive=True)
            with gr.Column(visible=True) as modules_not_need_gpt3:
                gr.Examples(
                    examples=examples,
                    inputs=[example_image],
                )
        with gr.Column(scale=0.5):
            openai_api_key = gr.Textbox(
                placeholder="Input openAI API key",
                show_label=False,
                label = "OpenAI API Key",
                lines=1,
                type="password")
            with gr.Row(scale=0.5):
                enable_chatGPT_button = gr.Button(value="Run with ChatGPT", interactive=True, variant='primary')
                disable_chatGPT_button = gr.Button(value="Run without ChatGPT (Faster)", interactive=True, variant='primary')
            with gr.Column(visible=False) as modules_need_gpt2:
                wiki_output = gr.Textbox(lines=5, label="Wiki", max_lines=5)
            with gr.Column(visible=False) as modules_not_need_gpt2:
                chatbot = gr.Chatbot(label="Chat about Selected Object",).style(height=550,scale=0.5)
                with gr.Column(visible=False) as modules_need_gpt3:
                    chat_input = gr.Textbox(show_label=False, placeholder="Enter text and press Enter").style(container=False)
                    with gr.Row():
                        clear_button_text = gr.Button(value="Clear Text", interactive=True)
                        submit_button_text = gr.Button(value="Submit", interactive=True, variant="primary")

    openai_api_key.submit(init_openai_api_key, inputs=[openai_api_key], outputs=[modules_need_gpt,modules_need_gpt2, modules_need_gpt3, modules_not_need_gpt, modules_not_need_gpt2, modules_not_need_gpt3, text_refiner])
    enable_chatGPT_button.click(init_openai_api_key, inputs=[openai_api_key], outputs=[modules_need_gpt,modules_need_gpt2, modules_need_gpt3, modules_not_need_gpt, modules_not_need_gpt2, modules_not_need_gpt3, text_refiner])
    disable_chatGPT_button.click(init_openai_api_key, outputs=[modules_need_gpt,modules_need_gpt2, modules_need_gpt3, modules_not_need_gpt, modules_not_need_gpt2, modules_not_need_gpt3, text_refiner])

    clear_button_clike.click(
        lambda x: ([[], [], []], x, ""),
        [origin_image],
        [click_state, image_input, wiki_output],
        queue=False,
        show_progress=False
    )
    clear_button_image.click(
        lambda: (None, [], [], [], [[], [], []], "", "", ""),
        [],
        [image_input, chatbot, state, chat_state, click_state, wiki_output, origin_image, img_caption],
        queue=False,
        show_progress=False
    )
    clear_button_text.click(
        lambda: ([], [], [[], [], [], []], []),
        [],
        [chatbot, state, click_state, chat_state],
        queue=False,
        show_progress=False
    )
    image_input.clear(
        lambda: (None, [], [], [], [[], [], []], "", "", ""),
        [],
        [image_input, chatbot, state, chat_state, click_state, wiki_output, origin_image, img_caption],
        queue=False,
        show_progress=False
    )

    image_input.upload(upload_callback,[image_input, state], [chatbot, state, chat_state, origin_image, click_state, image_input, image_embedding, original_size, input_size, img_caption])
    chat_input.submit(chat_with_points, [chat_input, click_state, chat_state, state, text_refiner, img_caption], [chatbot, state, chat_state])
    chat_input.submit(lambda: "", None, chat_input)
    example_image.change(upload_callback,[example_image, state], [chatbot, state, chat_state, origin_image, click_state, image_input, image_embedding, original_size, input_size, img_caption])

    # select coordinate
    image_input.select(inference_seg_cap,
                       inputs=[
                           origin_image,
                           point_prompt,
                           click_mode,
                           enable_wiki,
                           language,
                           sentiment,
                           factuality,
                           length,
                           image_embedding,
                           state,
                           click_state,
                           original_size,
                           input_size,
                           text_refiner
                       ],
                       outputs=[chatbot, state, click_state, chat_input, image_input, wiki_output],
                       show_progress=False, queue=True)

iface.queue(concurrency_count=5, api_open=False, max_size=10)
iface.launch(server_name="0.0.0.0", enable_queue=True)