File size: 12,247 Bytes
c426a27
5c74464
c426a27
 
10240e0
5c74464
ff883a7
 
 
 
 
c426a27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c74464
 
 
 
 
 
 
 
 
ff883a7
 
5c74464
ff883a7
5c74464
 
 
 
c426a27
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff883a7
c426a27
 
 
 
 
 
 
 
 
 
 
 
5c74464
 
ff883a7
5c74464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff883a7
5c74464
 
ff883a7
5c74464
 
 
 
 
 
 
 
 
 
ff883a7
5c74464
 
c426a27
 
 
 
ff883a7
c426a27
5c74464
 
c426a27
 
 
 
 
 
ff883a7
c426a27
5c74464
 
 
 
 
ff883a7
5c74464
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c426a27
 
5c74464
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
import cv2
import torch
import numpy as np
from PIL import Image
import copy
import time
import sys


def is_platform_win():
	return sys.platform == "win32"


def colormap(rgb=True):
	color_list = np.array(
		[
			0.000, 0.000, 0.000,
			1.000, 1.000, 1.000,
			1.000, 0.498, 0.313,
			0.392, 0.581, 0.929,
			0.000, 0.447, 0.741,
			0.850, 0.325, 0.098,
			0.929, 0.694, 0.125,
			0.494, 0.184, 0.556,
			0.466, 0.674, 0.188,
			0.301, 0.745, 0.933,
			0.635, 0.078, 0.184,
			0.300, 0.300, 0.300,
			0.600, 0.600, 0.600,
			1.000, 0.000, 0.000,
			1.000, 0.500, 0.000,
			0.749, 0.749, 0.000,
			0.000, 1.000, 0.000,
			0.000, 0.000, 1.000,
			0.667, 0.000, 1.000,
			0.333, 0.333, 0.000,
			0.333, 0.667, 0.000,
			0.333, 1.000, 0.000,
			0.667, 0.333, 0.000,
			0.667, 0.667, 0.000,
			0.667, 1.000, 0.000,
			1.000, 0.333, 0.000,
			1.000, 0.667, 0.000,
			1.000, 1.000, 0.000,
			0.000, 0.333, 0.500,
			0.000, 0.667, 0.500,
			0.000, 1.000, 0.500,
			0.333, 0.000, 0.500,
			0.333, 0.333, 0.500,
			0.333, 0.667, 0.500,
			0.333, 1.000, 0.500,
			0.667, 0.000, 0.500,
			0.667, 0.333, 0.500,
			0.667, 0.667, 0.500,
			0.667, 1.000, 0.500,
			1.000, 0.000, 0.500,
			1.000, 0.333, 0.500,
			1.000, 0.667, 0.500,
			1.000, 1.000, 0.500,
			0.000, 0.333, 1.000,
			0.000, 0.667, 1.000,
			0.000, 1.000, 1.000,
			0.333, 0.000, 1.000,
			0.333, 0.333, 1.000,
			0.333, 0.667, 1.000,
			0.333, 1.000, 1.000,
			0.667, 0.000, 1.000,
			0.667, 0.333, 1.000,
			0.667, 0.667, 1.000,
			0.667, 1.000, 1.000,
			1.000, 0.000, 1.000,
			1.000, 0.333, 1.000,
			1.000, 0.667, 1.000,
			0.167, 0.000, 0.000,
			0.333, 0.000, 0.000,
			0.500, 0.000, 0.000,
			0.667, 0.000, 0.000,
			0.833, 0.000, 0.000,
			1.000, 0.000, 0.000,
			0.000, 0.167, 0.000,
			0.000, 0.333, 0.000,
			0.000, 0.500, 0.000,
			0.000, 0.667, 0.000,
			0.000, 0.833, 0.000,
			0.000, 1.000, 0.000,
			0.000, 0.000, 0.167,
			0.000, 0.000, 0.333,
			0.000, 0.000, 0.500,
			0.000, 0.000, 0.667,
			0.000, 0.000, 0.833,
			0.000, 0.000, 1.000,
			0.143, 0.143, 0.143,
			0.286, 0.286, 0.286,
			0.429, 0.429, 0.429,
			0.571, 0.571, 0.571,
			0.714, 0.714, 0.714,
			0.857, 0.857, 0.857
		]
	).astype(np.float32)
	color_list = color_list.reshape((-1, 3)) * 255
	if not rgb:
		color_list = color_list[:, ::-1]
	return color_list


color_list = colormap()
color_list = color_list.astype('uint8').tolist()


def vis_add_mask(image, mask, color, alpha, kernel_size):
	color = np.array(color)
	mask = mask.astype('float').copy()
	mask = (cv2.GaussianBlur(mask, (kernel_size, kernel_size), kernel_size) / 255.) * (alpha)

	for i in range(3):
		image[:, :, i] = image[:, :, i] * (1-alpha+mask) + color[i] * (alpha-mask)

	return image


def vis_add_mask_wo_blur(image, mask, color, alpha):
	color = np.array(color)
	mask = mask.astype('float').copy()
	for i in range(3):
		image[:, :, i] = image[:, :, i] * (1-alpha+mask) + color[i] * (alpha-mask)
	return image


def vis_add_mask_wo_gaussian(image, background_mask, contour_mask, background_color, contour_color, background_alpha, contour_alpha):
	background_color = np.array(background_color)
	contour_color = np.array(contour_color)

	# background_mask = 1 - background_mask
	# contour_mask = 1 - contour_mask

	for i in range(3):
		image[:, :, i] = image[:, :, i] * (1-background_alpha+background_mask*background_alpha) \
						 + background_color[i] * (background_alpha-background_mask*background_alpha)

		image[:, :, i] = image[:, :, i] * (1-contour_alpha+contour_mask*contour_alpha) \
						 + contour_color[i] * (contour_alpha-contour_mask*contour_alpha)

	return image.astype('uint8')


def mask_painter(input_image, input_mask, background_alpha=0.7, background_blur_radius=7, contour_width=3, contour_color=3, contour_alpha=1):
	"""
	Input:
	input_image: numpy array
	input_mask: numpy array
	background_alpha: transparency of background, [0, 1], 1: all black, 0: do nothing
	background_blur_radius: radius of background blur, must be odd number
	contour_width: width of mask contour, must be odd number
	contour_color: color index (in color map) of mask contour, 0: black, 1: white, >1: others
	contour_alpha: transparency of mask contour, [0, 1], if 0: no contour highlighted

	Output:
	painted_image: numpy array
	"""
	assert input_image.shape[:2] == input_mask.shape, 'different shape'
	assert background_blur_radius % 2 * contour_width % 2 > 0, 'background_blur_radius and contour_width must be ODD'


	# 0: background, 1: foreground
	input_mask[input_mask>0] = 255

	# mask background
	painted_image = vis_add_mask(input_image, input_mask, color_list[0], background_alpha, background_blur_radius)	# black for background
	# mask contour
	contour_mask = input_mask.copy()
	contour_mask = cv2.Canny(contour_mask, 100, 200)	# contour extraction
	# widden contour
	kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (contour_width, contour_width))
	contour_mask = cv2.dilate(contour_mask, kernel)
	painted_image = vis_add_mask(painted_image, 255-contour_mask, color_list[contour_color], contour_alpha, contour_width)

	# painted_image = background_dist_map

	return painted_image


def mask_generator_00(mask, background_radius, contour_radius):
	# no background width when '00'
	# distance map
	dist_transform_fore = cv2.distanceTransform(mask, cv2.DIST_L2, 3)
	dist_transform_back = cv2.distanceTransform(1-mask, cv2.DIST_L2, 3)
	dist_map = dist_transform_fore - dist_transform_back
	# ...:::!!!:::...
	contour_radius += 2
	contour_mask = np.abs(np.clip(dist_map, -contour_radius, contour_radius))
	contour_mask = contour_mask / np.max(contour_mask)
	contour_mask[contour_mask>0.5] = 1.

	return mask, contour_mask


def mask_generator_01(mask, background_radius, contour_radius):
	# no background width when '00'
	# distance map
	dist_transform_fore = cv2.distanceTransform(mask, cv2.DIST_L2, 3)
	dist_transform_back = cv2.distanceTransform(1-mask, cv2.DIST_L2, 3)
	dist_map = dist_transform_fore - dist_transform_back
	# ...:::!!!:::...
	contour_radius += 2
	contour_mask = np.abs(np.clip(dist_map, -contour_radius, contour_radius))
	contour_mask = contour_mask / np.max(contour_mask)
	return mask, contour_mask


def mask_generator_10(mask, background_radius, contour_radius):
	# distance map
	dist_transform_fore = cv2.distanceTransform(mask, cv2.DIST_L2, 3)
	dist_transform_back = cv2.distanceTransform(1-mask, cv2.DIST_L2, 3)
	dist_map = dist_transform_fore - dist_transform_back
	# .....:::::!!!!!
	background_mask = np.clip(dist_map, -background_radius, background_radius)
	background_mask = (background_mask - np.min(background_mask))
	background_mask = background_mask / np.max(background_mask)
	# ...:::!!!:::...
	contour_radius += 2
	contour_mask = np.abs(np.clip(dist_map, -contour_radius, contour_radius))
	contour_mask = contour_mask / np.max(contour_mask)
	contour_mask[contour_mask>0.5] = 1.
	return background_mask, contour_mask


def mask_generator_11(mask, background_radius, contour_radius):
	# distance map
	dist_transform_fore = cv2.distanceTransform(mask, cv2.DIST_L2, 3)
	dist_transform_back = cv2.distanceTransform(1-mask, cv2.DIST_L2, 3)
	dist_map = dist_transform_fore - dist_transform_back
	# .....:::::!!!!!
	background_mask = np.clip(dist_map, -background_radius, background_radius)
	background_mask = (background_mask - np.min(background_mask))
	background_mask = background_mask / np.max(background_mask)
	# ...:::!!!:::...
	contour_radius += 2
	contour_mask = np.abs(np.clip(dist_map, -contour_radius, contour_radius))
	contour_mask = contour_mask / np.max(contour_mask)
	return background_mask, contour_mask


def mask_painter_wo_gaussian(input_image, input_mask, background_alpha=0.5, background_blur_radius=7, contour_width=3, contour_color=3, contour_alpha=1, mode='11'):
	"""
	Input:
	input_image: numpy array
	input_mask: numpy array
	background_alpha: transparency of background, [0, 1], 1: all black, 0: do nothing
	background_blur_radius: radius of background blur, must be odd number
	contour_width: width of mask contour, must be odd number
	contour_color: color index (in color map) of mask contour, 0: black, 1: white, >1: others
	contour_alpha: transparency of mask contour, [0, 1], if 0: no contour highlighted
	mode: painting mode, '00', no blur, '01' only blur contour, '10' only blur background, '11' blur both

	Output:
	painted_image: numpy array
	"""
	assert input_image.shape[:2] == input_mask.shape, 'different shape'
	assert background_blur_radius % 2 * contour_width % 2 > 0, 'background_blur_radius and contour_width must be ODD'
	assert mode in ['00', '01', '10', '11'], 'mode should be 00, 01, 10, or 11'

	# downsample input image and mask
	width, height = input_image.shape[0], input_image.shape[1]
	res = 1024
	ratio = min(1.0 * res / max(width, height), 1.0)
	input_image = cv2.resize(input_image, (int(height*ratio), int(width*ratio)))
	input_mask = cv2.resize(input_mask, (int(height*ratio), int(width*ratio)))

	# 0: background, 1: foreground
	msk = np.clip(input_mask, 0, 1)

	# generate masks for background and contour pixels
	background_radius = (background_blur_radius - 1) // 2
	contour_radius = (contour_width - 1) // 2
	generator_dict = {'00':mask_generator_00, '01':mask_generator_01, '10':mask_generator_10, '11':mask_generator_11}
	background_mask, contour_mask = generator_dict[mode](msk, background_radius, contour_radius)

	# paint
	painted_image = vis_add_mask_wo_gaussian \
		(input_image, background_mask, contour_mask, color_list[0], color_list[contour_color], background_alpha, contour_alpha)	# black for background

	return painted_image


if __name__ == '__main__':

	background_alpha = 0.7  	# transparency of background 1: all black, 0: do nothing
	background_blur_radius = 31	# radius of background blur, must be odd number
	contour_width = 11       	# contour width, must be odd number
	contour_color = 3      		# id in color map, 0: black, 1: white, >1: others
	contour_alpha = 1       	# transparency of background, 0: no contour highlighted

	# load input image and mask
	input_image = np.array(Image.open('./test_img/painter_input_image.jpg').convert('RGB'))
	input_mask = np.array(Image.open('./test_img/painter_input_mask.jpg').convert('P'))

	# paint
	overall_time_1 = 0
	overall_time_2 = 0
	overall_time_3 = 0
	overall_time_4 = 0
	overall_time_5 = 0

	for i in range(50):
		t2 = time.time()
		painted_image_00 = mask_painter_wo_gaussian(input_image, input_mask, background_alpha, background_blur_radius, contour_width, contour_color, contour_alpha, mode='00')
		e2 = time.time()

		t3 = time.time()
		painted_image_10 = mask_painter_wo_gaussian(input_image, input_mask, background_alpha, background_blur_radius, contour_width, contour_color, contour_alpha, mode='10')
		e3 = time.time()

		t1 = time.time()
		painted_image = mask_painter(input_image, input_mask, background_alpha, background_blur_radius, contour_width, contour_color, contour_alpha)
		e1 = time.time()

		t4 = time.time()
		painted_image_01 = mask_painter_wo_gaussian(input_image, input_mask, background_alpha, background_blur_radius, contour_width, contour_color, contour_alpha, mode='01')
		e4 = time.time()

		t5 = time.time()
		painted_image_11 = mask_painter_wo_gaussian(input_image, input_mask, background_alpha, background_blur_radius, contour_width, contour_color, contour_alpha, mode='11')
		e5 = time.time()

		overall_time_1 += (e1 - t1)
		overall_time_2 += (e2 - t2)
		overall_time_3 += (e3 - t3)
		overall_time_4 += (e4 - t4)
		overall_time_5 += (e5 - t5)

	print(f'average time w gaussian: {overall_time_1/50}')
	print(f'average time w/o gaussian00: {overall_time_2/50}')
	print(f'average time w/o gaussian10: {overall_time_3/50}')
	print(f'average time w/o gaussian01: {overall_time_4/50}')
	print(f'average time w/o gaussian11: {overall_time_5/50}')

	# save
	painted_image_00 = Image.fromarray(painted_image_00)
	painted_image_00.save('./test_img/painter_output_image_00.png')

	painted_image_10 = Image.fromarray(painted_image_10)
	painted_image_10.save('./test_img/painter_output_image_10.png')

	painted_image_01 = Image.fromarray(painted_image_01)
	painted_image_01.save('./test_img/painter_output_image_01.png')

	painted_image_11 = Image.fromarray(painted_image_11)
	painted_image_11.save('./test_img/painter_output_image_11.png')