File size: 24,775 Bytes
9a84ec8
3cb3d90
9a84ec8
 
3cb3d90
9a84ec8
 
 
 
 
 
 
 
 
 
 
 
 
13c1c2e
9a84ec8
 
3cb3d90
9a84ec8
 
 
 
 
 
 
 
 
ff883a7
 
9a84ec8
 
 
 
ff883a7
9a84ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
3cb3d90
9a84ec8
3cb3d90
9a84ec8
 
 
 
 
13c1c2e
 
 
 
 
 
 
 
 
9a84ec8
13c1c2e
 
 
9a84ec8
 
13c1c2e
 
9a84ec8
13c1c2e
9a84ec8
 
 
13c1c2e
 
9a84ec8
3cb3d90
13c1c2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ff883a7
3cb3d90
9a84ec8
 
 
 
3cb3d90
 
 
9a84ec8
13c1c2e
 
 
 
 
 
ff883a7
13c1c2e
9a84ec8
 
 
 
 
3cb3d90
 
9a84ec8
 
 
ff883a7
9a84ec8
 
 
 
 
 
 
 
 
 
 
13c1c2e
ff883a7
13c1c2e
 
 
 
 
9a84ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3cb3d90
 
9a84ec8
3cb3d90
9a84ec8
 
 
 
 
ff883a7
3cb3d90
ff883a7
 
 
3cb3d90
9a84ec8
 
 
 
 
 
 
 
 
 
3cb3d90
eabdb1c
 
9a84ec8
eabdb1c
 
10240e0
13c1c2e
3cb3d90
13c1c2e
3cb3d90
 
9a84ec8
 
 
 
 
 
 
 
 
 
 
5c74464
9a84ec8
 
10240e0
 
eabdb1c
 
9a84ec8
 
 
 
3cb3d90
 
9a84ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13c1c2e
ff883a7
13c1c2e
 
 
9a84ec8
13c1c2e
 
9a84ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13c1c2e
9a84ec8
 
 
 
5c74464
9a84ec8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
import os
import json
import PIL
import gradio as gr
import numpy as np
from gradio import processing_utils

from packaging import version
from PIL import Image, ImageDraw

from caption_anything.model import CaptionAnything
from caption_anything.utils.image_editing_utils import create_bubble_frame
from caption_anything.utils.utils import mask_painter, seg_model_map, prepare_segmenter
from caption_anything.utils.parser import parse_augment
from caption_anything.captioner import build_captioner
from caption_anything.text_refiner import build_text_refiner
from caption_anything.segmenter import build_segmenter
from caption_anything.utils.chatbot import ConversationBot, build_chatbot_tools, get_new_image_name
from segment_anything import sam_model_registry


args = parse_augment()
if args.segmenter_checkpoint is None:
    _, segmenter_checkpoint = prepare_segmenter(args.segmenter)
else:
    segmenter_checkpoint = args.segmenter_checkpoint
    
shared_captioner = build_captioner(args.captioner, args.device, args)
shared_sam_model = sam_model_registry[seg_model_map[args.segmenter]](checkpoint=segmenter_checkpoint).to(args.device)
tools_dict = {e.split('_')[0].strip(): e.split('_')[1].strip() for e in args.chat_tools_dict.split(',')}
shared_chatbot_tools = build_chatbot_tools(tools_dict)


class ImageSketcher(gr.Image):
    """
    Fix the bug of gradio.Image that cannot upload with tool == 'sketch'.
    """

    is_template = True  # Magic to make this work with gradio.Block, don't remove unless you know what you're doing.

    def __init__(self, **kwargs):
        super().__init__(tool="sketch", **kwargs)

    def preprocess(self, x):
        if self.tool == 'sketch' and self.source in ["upload", "webcam"]:
            assert isinstance(x, dict)
            if x['mask'] is None:
                decode_image = processing_utils.decode_base64_to_image(x['image'])
                width, height = decode_image.size
                mask = np.zeros((height, width, 4), dtype=np.uint8)
                mask[..., -1] = 255
                mask = self.postprocess(mask)

                x['mask'] = mask

        return super().preprocess(x)


def build_caption_anything_with_models(args, api_key="", captioner=None, sam_model=None, text_refiner=None,
                                       session_id=None):
    segmenter = build_segmenter(args.segmenter, args.device, args, model=sam_model)
    captioner = captioner
    if session_id is not None:
        print('Init caption anything for session {}'.format(session_id))
    return CaptionAnything(args, api_key, captioner=captioner, segmenter=segmenter, text_refiner=text_refiner)


def init_openai_api_key(api_key=""):
    text_refiner = None
    visual_chatgpt = None
    if api_key and len(api_key) > 30:
        try:
            text_refiner = build_text_refiner(args.text_refiner, args.device, args, api_key)
            text_refiner.llm('hi')  # test
            visual_chatgpt = ConversationBot(shared_chatbot_tools, api_key)
        except:
            text_refiner = None
            visual_chatgpt = None
    openai_available = text_refiner is not None
    return gr.update(visible=openai_available), gr.update(visible=openai_available), gr.update(
        visible=openai_available), gr.update(visible=True), gr.update(visible=True), gr.update(
        visible=True), text_refiner, visual_chatgpt


def get_click_prompt(chat_input, click_state, click_mode):
    inputs = json.loads(chat_input)
    if click_mode == 'Continuous':
        points = click_state[0]
        labels = click_state[1]
        for input in inputs:
            points.append(input[:2])
            labels.append(input[2])
    elif click_mode == 'Single':
        points = []
        labels = []
        for input in inputs:
            points.append(input[:2])
            labels.append(input[2])
        click_state[0] = points
        click_state[1] = labels
    else:
        raise NotImplementedError

    prompt = {
        "prompt_type": ["click"],
        "input_point": click_state[0],
        "input_label": click_state[1],
        "multimask_output": "True",
    }
    return prompt


def update_click_state(click_state, caption, click_mode):
    if click_mode == 'Continuous':
        click_state[2].append(caption)
    elif click_mode == 'Single':
        click_state[2] = [caption]
    else:
        raise NotImplementedError

def chat_input_callback(*args):
    visual_chatgpt, chat_input, click_state, state, aux_state = args
    if visual_chatgpt is not None:
        return visual_chatgpt.run_text(chat_input, state, aux_state)
    else:
        response = "Text refiner is not initilzed, please input openai api key."
        state = state + [(chat_input, response)]
        return state, state

def upload_callback(image_input, state, visual_chatgpt=None):

    if isinstance(image_input, dict):  # if upload from sketcher_input, input contains image and mask
        image_input, mask = image_input['image'], image_input['mask']

    click_state = [[], [], []]
    res = 1024
    width, height = image_input.size
    ratio = min(1.0 * res / max(width, height), 1.0)
    if ratio < 1.0:
        image_input = image_input.resize((int(width * ratio), int(height * ratio)))
        print('Scaling input image to {}'.format(image_input.size))
        
    model = build_caption_anything_with_models(
        args,
        api_key="",
        captioner=shared_captioner,
        sam_model=shared_sam_model,
        session_id=iface.app_id
    )
    model.segmenter.set_image(image_input)
    image_embedding = model.image_embedding
    original_size = model.original_size
    input_size = model.input_size
    
    if visual_chatgpt is not None:
        new_image_path = get_new_image_name('chat_image', func_name='upload')
        image_input.save(new_image_path)
        visual_chatgpt.current_image = new_image_path
        img_caption, _ = model.captioner.inference_seg(image_input)
        Human_prompt = f'\nHuman: provide a new figure with path {new_image_path}. The description is: {img_caption}. This information helps you to understand this image, but you should use tools to finish following tasks, rather than directly imagine from my description. If you understand, say \"Received\". \n'
        AI_prompt = "Received."
        visual_chatgpt.agent.memory.buffer = visual_chatgpt.agent.memory.buffer + Human_prompt + 'AI: ' + AI_prompt
    state = [(None, 'Received new image, resize it to width {} and height {}: '.format(image_input.size[0], image_input.size[1]))]

    return state, state, image_input, click_state, image_input, image_input, image_embedding, \
        original_size, input_size


def inference_click(image_input, point_prompt, click_mode, enable_wiki, language, sentiment, factuality,
                    length, image_embedding, state, click_state, original_size, input_size, text_refiner, visual_chatgpt,
                    evt: gr.SelectData):
    click_index = evt.index

    if point_prompt == 'Positive':
        coordinate = "[[{}, {}, 1]]".format(str(click_index[0]), str(click_index[1]))
    else:
        coordinate = "[[{}, {}, 0]]".format(str(click_index[0]), str(click_index[1]))

    prompt = get_click_prompt(coordinate, click_state, click_mode)
    input_points = prompt['input_point']
    input_labels = prompt['input_label']

    controls = {'length': length,
                'sentiment': sentiment,
                'factuality': factuality,
                'language': language}

    model = build_caption_anything_with_models(
        args,
        api_key="",
        captioner=shared_captioner,
        sam_model=shared_sam_model,
        text_refiner=text_refiner,
        session_id=iface.app_id
    )

    model.setup(image_embedding, original_size, input_size, is_image_set=True)

    enable_wiki = True if enable_wiki in ['True', 'TRUE', 'true', True, 'Yes', 'YES', 'yes'] else False
    out = model.inference(image_input, prompt, controls, disable_gpt=True, enable_wiki=enable_wiki)

    state = state + [("Image point: {}, Input label: {}".format(prompt["input_point"], prompt["input_label"]), None)]
    state = state + [(None, "raw_caption: {}".format(out['generated_captions']['raw_caption']))]
    wiki = out['generated_captions'].get('wiki', "")
    update_click_state(click_state, out['generated_captions']['raw_caption'], click_mode)
    text = out['generated_captions']['raw_caption']
    input_mask = np.array(out['mask'].convert('P'))
    image_input = mask_painter(np.array(image_input), input_mask)
    origin_image_input = image_input
    image_input = create_bubble_frame(image_input, text, (click_index[0], click_index[1]), input_mask,
                                      input_points=input_points, input_labels=input_labels)
    x, y = input_points[-1]
    
    if visual_chatgpt is not None:
        new_crop_save_path = get_new_image_name('chat_image', func_name='crop')
        Image.open(out["crop_save_path"]).save(new_crop_save_path)
        point_prompt = f'You should primarly use tools on the selected regional image (description: {text}, path: {new_crop_save_path}), which is a part of the whole image (path: {visual_chatgpt.current_image}). If human mentioned some objects not in the selected region, you can use tools on the whole image.'
        visual_chatgpt.point_prompt = point_prompt

    yield state, state, click_state, image_input, wiki
    if not args.disable_gpt and model.text_refiner:
        refined_caption = model.text_refiner.inference(query=text, controls=controls, context=out['context_captions'],
                                                       enable_wiki=enable_wiki)
        # new_cap = 'Original: ' + text + '. Refined: ' + refined_caption['caption']
        new_cap = refined_caption['caption']
        wiki = refined_caption['wiki']
        state = state + [(None, f"caption: {new_cap}")]
        refined_image_input = create_bubble_frame(origin_image_input, new_cap, (click_index[0], click_index[1]),
                                                  input_mask,
                                                  input_points=input_points, input_labels=input_labels)
        yield state, state, click_state, refined_image_input, wiki


def get_sketch_prompt(mask: PIL.Image.Image):
    """
    Get the prompt for the sketcher.
    TODO: This is a temporary solution. We should cluster the sketch and get the bounding box of each cluster.
    """

    mask = np.asarray(mask)[..., 0]

    # Get the bounding box of the sketch
    y, x = np.where(mask != 0)
    x1, y1 = np.min(x), np.min(y)
    x2, y2 = np.max(x), np.max(y)

    prompt = {
        'prompt_type': ['box'],
        'input_boxes': [
            [x1, y1, x2, y2]
        ]
    }

    return prompt


def inference_traject(sketcher_image, enable_wiki, language, sentiment, factuality, length, image_embedding, state,
                      original_size, input_size, text_refiner):
    image_input, mask = sketcher_image['image'], sketcher_image['mask']

    prompt = get_sketch_prompt(mask)
    boxes = prompt['input_boxes']

    controls = {'length': length,
                'sentiment': sentiment,
                'factuality': factuality,
                'language': language}

    model = build_caption_anything_with_models(
        args,
        api_key="",
        captioner=shared_captioner,
        sam_model=shared_sam_model,
        text_refiner=text_refiner,
        session_id=iface.app_id
    )

    model.setup(image_embedding, original_size, input_size, is_image_set=True)

    enable_wiki = True if enable_wiki in ['True', 'TRUE', 'true', True, 'Yes', 'YES', 'yes'] else False
    out = model.inference(image_input, prompt, controls, disable_gpt=True, enable_wiki=enable_wiki)

    # Update components and states
    state.append((f'Box: {boxes}', None))
    state.append((None, f'raw_caption: {out["generated_captions"]["raw_caption"]}'))
    wiki = out['generated_captions'].get('wiki', "")
    text = out['generated_captions']['raw_caption']
    input_mask = np.array(out['mask'].convert('P'))
    image_input = mask_painter(np.array(image_input), input_mask)

    origin_image_input = image_input

    fake_click_index = (int((boxes[0][0] + boxes[0][2]) / 2), int((boxes[0][1] + boxes[0][3]) / 2))
    image_input = create_bubble_frame(image_input, text, fake_click_index, input_mask)

    yield state, state, image_input, wiki

    if not args.disable_gpt and model.text_refiner:
        refined_caption = model.text_refiner.inference(query=text, controls=controls, context=out['context_captions'],
                                                       enable_wiki=enable_wiki)

        new_cap = refined_caption['caption']
        wiki = refined_caption['wiki']
        state = state + [(None, f"caption: {new_cap}")]
        refined_image_input = create_bubble_frame(origin_image_input, new_cap, fake_click_index, input_mask)

        yield state, state, refined_image_input, wiki

def clear_chat_memory(visual_chatgpt):
    if visual_chatgpt is not None:
        visual_chatgpt.memory.clear()
        visual_chatgpt.current_image = None
        visual_chatgpt.point_prompt = ""
    
def get_style():
    current_version = version.parse(gr.__version__)
    if current_version <= version.parse('3.24.1'):
        style = '''
        #image_sketcher{min-height:500px}
        #image_sketcher [data-testid="image"], #image_sketcher [data-testid="image"] > div{min-height: 500px}
        #image_upload{min-height:500px}
        #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 500px}
        '''
    elif current_version <= version.parse('3.27'):
        style = '''
        #image_sketcher{min-height:500px}
        #image_upload{min-height:500px}
        '''
    else:
        style = None

    return style


def create_ui():
    title = """<p><h1 align="center">Caption-Anything</h1></p>
    """
    description = """<p>Gradio demo for Caption Anything, image to dense captioning generation with various language styles. To use it, simply upload your image, or click one of the examples to load them. Code: <a href="https://github.com/ttengwang/Caption-Anything">https://github.com/ttengwang/Caption-Anything</a> <a href="https://huggingface.co/spaces/TencentARC/Caption-Anything?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>"""

    examples = [
        ["test_images/img35.webp"],
        ["test_images/img2.jpg"],
        ["test_images/img5.jpg"],
        ["test_images/img12.jpg"],
        ["test_images/img14.jpg"],
        ["test_images/qingming3.jpeg"],
        ["test_images/img1.jpg"],
    ]

    with gr.Blocks(
            css=get_style()
    ) as iface:
        state = gr.State([])
        click_state = gr.State([[], [], []])
        # chat_state = gr.State([])
        origin_image = gr.State(None)
        image_embedding = gr.State(None)
        text_refiner = gr.State(None)
        visual_chatgpt = gr.State(None)
        original_size = gr.State(None)
        input_size = gr.State(None)
        # img_caption = gr.State(None)
        aux_state = gr.State([])

        gr.Markdown(title)
        gr.Markdown(description)

        with gr.Row():
            with gr.Column(scale=1.0):
                with gr.Column(visible=False) as modules_not_need_gpt:
                    with gr.Tab("Click"):
                        image_input = gr.Image(type="pil", interactive=True, elem_id="image_upload")
                        example_image = gr.Image(type="pil", interactive=False, visible=False)
                        with gr.Row(scale=1.0):
                            with gr.Row(scale=0.4):
                                point_prompt = gr.Radio(
                                    choices=["Positive", "Negative"],
                                    value="Positive",
                                    label="Point Prompt",
                                    interactive=True)
                                click_mode = gr.Radio(
                                    choices=["Continuous", "Single"],
                                    value="Continuous",
                                    label="Clicking Mode",
                                    interactive=True)
                            with gr.Row(scale=0.4):
                                clear_button_click = gr.Button(value="Clear Clicks", interactive=True)
                                clear_button_image = gr.Button(value="Clear Image", interactive=True)
                    with gr.Tab("Trajectory (beta)"):
                        sketcher_input = ImageSketcher(type="pil", interactive=True, brush_radius=20,
                                                       elem_id="image_sketcher")
                        with gr.Row():
                            submit_button_sketcher = gr.Button(value="Submit", interactive=True)

                with gr.Column(visible=False) as modules_need_gpt:
                    with gr.Row(scale=1.0):
                        language = gr.Dropdown(
                            ['English', 'Chinese', 'French', "Spanish", "Arabic", "Portuguese", "Cantonese"],
                            value="English", label="Language", interactive=True)
                        sentiment = gr.Radio(
                            choices=["Positive", "Natural", "Negative"],
                            value="Natural",
                            label="Sentiment",
                            interactive=True,
                        )
                    with gr.Row(scale=1.0):
                        factuality = gr.Radio(
                            choices=["Factual", "Imagination"],
                            value="Factual",
                            label="Factuality",
                            interactive=True,
                        )
                        length = gr.Slider(
                            minimum=10,
                            maximum=80,
                            value=10,
                            step=1,
                            interactive=True,
                            label="Generated Caption Length",
                        )
                        enable_wiki = gr.Radio(
                            choices=["Yes", "No"],
                            value="No",
                            label="Enable Wiki",
                            interactive=True)
                with gr.Column(visible=True) as modules_not_need_gpt3:
                    gr.Examples(
                        examples=examples,
                        inputs=[example_image],
                    )
            with gr.Column(scale=0.5):
                openai_api_key = gr.Textbox(
                    placeholder="Input openAI API key",
                    show_label=False,
                    label="OpenAI API Key",
                    lines=1,
                    type="password")
                with gr.Row(scale=0.5):
                    enable_chatGPT_button = gr.Button(value="Run with ChatGPT", interactive=True, variant='primary')
                    disable_chatGPT_button = gr.Button(value="Run without ChatGPT (Faster)", interactive=True,
                                                       variant='primary')
                with gr.Column(visible=False) as modules_need_gpt2:
                    wiki_output = gr.Textbox(lines=5, label="Wiki", max_lines=5)
                with gr.Column(visible=False) as modules_not_need_gpt2:
                    chatbot = gr.Chatbot(label="Chat about Selected Object", ).style(height=550, scale=0.5)
                    with gr.Column(visible=False) as modules_need_gpt3:
                        chat_input = gr.Textbox(show_label=False, placeholder="Enter text and press Enter").style(
                            container=False)
                        with gr.Row():
                            clear_button_text = gr.Button(value="Clear Text", interactive=True)
                            submit_button_text = gr.Button(value="Submit", interactive=True, variant="primary")

        openai_api_key.submit(init_openai_api_key, inputs=[openai_api_key],
                              outputs=[modules_need_gpt, modules_need_gpt2, modules_need_gpt3, modules_not_need_gpt,
                                       modules_not_need_gpt2, modules_not_need_gpt3, text_refiner, visual_chatgpt])
        enable_chatGPT_button.click(init_openai_api_key, inputs=[openai_api_key],
                                    outputs=[modules_need_gpt, modules_need_gpt2, modules_need_gpt3,
                                             modules_not_need_gpt,
                                             modules_not_need_gpt2, modules_not_need_gpt3, text_refiner, visual_chatgpt])
        disable_chatGPT_button.click(init_openai_api_key,
                                     outputs=[modules_need_gpt, modules_need_gpt2, modules_need_gpt3,
                                              modules_not_need_gpt,
                                              modules_not_need_gpt2, modules_not_need_gpt3, text_refiner, visual_chatgpt])

        clear_button_click.click(
            lambda x: ([[], [], []], x, ""),
            [origin_image],
            [click_state, image_input, wiki_output],
            queue=False,
            show_progress=False
        )
        clear_button_image.click(
            lambda: (None, [], [], [[], [], []], "", "", ""),
            [],
            [image_input, chatbot, state, click_state, wiki_output, origin_image],
            queue=False,
            show_progress=False
        )
        clear_button_image.click(clear_chat_memory, inputs=[visual_chatgpt])
        clear_button_text.click(
            lambda: ([], [], [[], [], [], []]),
            [],
            [chatbot, state, click_state],
            queue=False,
            show_progress=False
        )
        clear_button_text.click(clear_chat_memory, inputs=[visual_chatgpt])
        
        image_input.clear(
            lambda: (None, [], [], [[], [], []], "", "", ""),
            [],
            [image_input, chatbot, state, click_state, wiki_output, origin_image],
            queue=False,
            show_progress=False
        )

        image_input.clear(clear_chat_memory, inputs=[visual_chatgpt])
        

        image_input.upload(upload_callback, [image_input, state, visual_chatgpt],
                           [chatbot, state, origin_image, click_state, image_input, sketcher_input,
                            image_embedding, original_size, input_size])
        sketcher_input.upload(upload_callback, [sketcher_input, state, visual_chatgpt],
                              [chatbot, state, origin_image, click_state, image_input, sketcher_input,
                               image_embedding, original_size, input_size])
        chat_input.submit(chat_input_callback, [visual_chatgpt, chat_input, click_state, state, aux_state],
                          [chatbot, state, aux_state])
        chat_input.submit(lambda: "", None, chat_input)
        submit_button_text.click(chat_input_callback, [visual_chatgpt, chat_input, click_state, state, aux_state],
                          [chatbot, state, aux_state])
        submit_button_text.click(lambda: "", None, chat_input)
        example_image.change(upload_callback, [example_image, state, visual_chatgpt],
                             [chatbot, state, origin_image, click_state, image_input, sketcher_input,
                              image_embedding, original_size, input_size])
        example_image.change(clear_chat_memory, inputs=[visual_chatgpt])
        # select coordinate
        image_input.select(
            inference_click,
            inputs=[
                origin_image, point_prompt, click_mode, enable_wiki, language, sentiment, factuality, length,
                image_embedding, state, click_state, original_size, input_size, text_refiner, visual_chatgpt
            ],
            outputs=[chatbot, state, click_state, image_input, wiki_output],
            show_progress=False, queue=True
        )

        submit_button_sketcher.click(
            inference_traject,
            inputs=[
                sketcher_input, enable_wiki, language, sentiment, factuality, length, image_embedding, state,
                original_size, input_size, text_refiner
            ],
            outputs=[chatbot, state, sketcher_input, wiki_output],
            show_progress=False, queue=True
        )

        return iface


if __name__ == '__main__':
    iface = create_ui()
    iface.queue(concurrency_count=5, api_open=False, max_size=10)
    iface.launch(server_name="0.0.0.0", enable_queue=True, server_port=args.port, share=args.gradio_share)