Spaces:
Runtime error
Runtime error
import os | |
import json | |
from typing import List | |
import PIL | |
import gradio as gr | |
import numpy as np | |
from gradio import processing_utils | |
from packaging import version | |
from PIL import Image, ImageDraw | |
from caption_anything.model import CaptionAnything | |
from caption_anything.utils.image_editing_utils import create_bubble_frame | |
from caption_anything.utils.utils import mask_painter, seg_model_map, prepare_segmenter | |
from caption_anything.utils.parser import parse_augment | |
from caption_anything.captioner import build_captioner | |
from caption_anything.text_refiner import build_text_refiner | |
from caption_anything.segmenter import build_segmenter | |
from caption_anything.utils.chatbot import ConversationBot, build_chatbot_tools, get_new_image_name | |
from segment_anything import sam_model_registry | |
args = parse_augment() | |
args = parse_augment() | |
if args.segmenter_checkpoint is None: | |
_, segmenter_checkpoint = prepare_segmenter(args.segmenter) | |
else: | |
segmenter_checkpoint = args.segmenter_checkpoint | |
shared_captioner = build_captioner(args.captioner, args.device, args) | |
shared_sam_model = sam_model_registry[seg_model_map[args.segmenter]](checkpoint=segmenter_checkpoint).to(args.device) | |
class ImageSketcher(gr.Image): | |
""" | |
Fix the bug of gradio.Image that cannot upload with tool == 'sketch'. | |
""" | |
is_template = True # Magic to make this work with gradio.Block, don't remove unless you know what you're doing. | |
def __init__(self, **kwargs): | |
super().__init__(tool="sketch", **kwargs) | |
def preprocess(self, x): | |
if self.tool == 'sketch' and self.source in ["upload", "webcam"]: | |
assert isinstance(x, dict) | |
if x['mask'] is None: | |
decode_image = processing_utils.decode_base64_to_image(x['image']) | |
width, height = decode_image.size | |
mask = np.zeros((height, width, 4), dtype=np.uint8) | |
mask[..., -1] = 255 | |
mask = self.postprocess(mask) | |
x['mask'] = mask | |
return super().preprocess(x) | |
def build_caption_anything_with_models(args, api_key="", captioner=None, sam_model=None, text_refiner=None, | |
session_id=None): | |
segmenter = build_segmenter(args.segmenter, args.device, args, model=sam_model) | |
captioner = captioner | |
if session_id is not None: | |
print('Init caption anything for session {}'.format(session_id)) | |
return CaptionAnything(args, api_key, captioner=captioner, segmenter=segmenter, text_refiner=text_refiner) | |
def init_openai_api_key(api_key=""): | |
text_refiner = None | |
if api_key and len(api_key) > 30: | |
try: | |
text_refiner = build_text_refiner(args.text_refiner, args.device, args, api_key) | |
text_refiner.llm('hi') # test | |
except: | |
text_refiner = None | |
openai_available = text_refiner is not None | |
return gr.update(visible=openai_available), gr.update(visible=openai_available), gr.update( | |
visible=openai_available), gr.update(visible=True), gr.update(visible=True), gr.update( | |
visible=True), text_refiner | |
def get_click_prompt(chat_input, click_state, click_mode): | |
inputs = json.loads(chat_input) | |
if click_mode == 'Continuous': | |
points = click_state[0] | |
labels = click_state[1] | |
for input in inputs: | |
points.append(input[:2]) | |
labels.append(input[2]) | |
elif click_mode == 'Single': | |
points = [] | |
labels = [] | |
for input in inputs: | |
points.append(input[:2]) | |
labels.append(input[2]) | |
click_state[0] = points | |
click_state[1] = labels | |
else: | |
raise NotImplementedError | |
prompt = { | |
"prompt_type": ["click"], | |
"input_point": click_state[0], | |
"input_label": click_state[1], | |
"multimask_output": "True", | |
} | |
return prompt | |
def update_click_state(click_state, caption, click_mode): | |
if click_mode == 'Continuous': | |
click_state[2].append(caption) | |
elif click_mode == 'Single': | |
click_state[2] = [caption] | |
else: | |
raise NotImplementedError | |
def chat_with_points(chat_input, click_state, chat_state, state, text_refiner, img_caption): | |
if text_refiner is None: | |
response = "Text refiner is not initilzed, please input openai api key." | |
state = state + [(chat_input, response)] | |
return state, state, chat_state | |
points, labels, captions = click_state | |
# point_chat_prompt = "I want you act as a chat bot in terms of image. I will give you some points (w, h) in the image and tell you what happed on the point in natural language. Note that (0, 0) refers to the top-left corner of the image, w refers to the width and h refers the height. You should chat with me based on the fact in the image instead of imagination. Now I tell you the points with their visual description:\n{points_with_caps}\nNow begin chatting!" | |
suffix = '\nHuman: {chat_input}\nAI: ' | |
qa_template = '\nHuman: {q}\nAI: {a}' | |
# # "The image is of width {width} and height {height}." | |
point_chat_prompt = "I am an AI trained to chat with you about an image. I am greate at what is going on in any image based on the image information your provide. The overall image description is \"{img_caption}\". You will also provide me objects in the image in details, i.e., their location and visual descriptions. Here are the locations and descriptions of events that happen in the image: {points_with_caps} \nYou are required to use language instead of number to describe these positions. Now, let's chat!" | |
prev_visual_context = "" | |
pos_points = [] | |
pos_captions = [] | |
for i in range(len(points)): | |
if labels[i] == 1: | |
pos_points.append(f"(X:{points[i][0]}, Y:{points[i][1]})") | |
pos_captions.append(captions[i]) | |
prev_visual_context = prev_visual_context + '\n' + 'There is an event described as \"{}\" locating at {}'.format( | |
pos_captions[-1], ', '.join(pos_points)) | |
context_length_thres = 500 | |
prev_history = "" | |
for i in range(len(chat_state)): | |
q, a = chat_state[i] | |
if len(prev_history) < context_length_thres: | |
prev_history = prev_history + qa_template.format(**{"q": q, "a": a}) | |
else: | |
break | |
chat_prompt = point_chat_prompt.format( | |
**{"img_caption": img_caption, "points_with_caps": prev_visual_context}) + prev_history + suffix.format( | |
**{"chat_input": chat_input}) | |
print('\nchat_prompt: ', chat_prompt) | |
response = text_refiner.llm(chat_prompt) | |
state = state + [(chat_input, response)] | |
chat_state = chat_state + [(chat_input, response)] | |
return state, state, chat_state | |
def upload_callback(image_input, state): | |
if isinstance(image_input, dict): # if upload from sketcher_input, input contains image and mask | |
image_input, mask = image_input['image'], image_input['mask'] | |
chat_state = [] | |
click_state = [[], [], []] | |
res = 1024 | |
width, height = image_input.size | |
ratio = min(1.0 * res / max(width, height), 1.0) | |
if ratio < 1.0: | |
image_input = image_input.resize((int(width * ratio), int(height * ratio))) | |
print('Scaling input image to {}'.format(image_input.size)) | |
state = [] + [(None, 'Image size: ' + str(image_input.size))] | |
model = build_caption_anything_with_models( | |
args, | |
api_key="", | |
captioner=shared_captioner, | |
sam_model=shared_sam_model, | |
session_id=iface.app_id | |
) | |
model.segmenter.set_image(image_input) | |
image_embedding = model.image_embedding | |
original_size = model.original_size | |
input_size = model.input_size | |
img_caption, _ = model.captioner.inference_seg(image_input) | |
return state, state, chat_state, image_input, click_state, image_input, image_input, image_embedding, \ | |
original_size, input_size, img_caption | |
def inference_click(image_input, point_prompt, click_mode, enable_wiki, language, sentiment, factuality, | |
length, image_embedding, state, click_state, original_size, input_size, text_refiner, | |
evt: gr.SelectData): | |
click_index = evt.index | |
if point_prompt == 'Positive': | |
coordinate = "[[{}, {}, 1]]".format(str(click_index[0]), str(click_index[1])) | |
else: | |
coordinate = "[[{}, {}, 0]]".format(str(click_index[0]), str(click_index[1])) | |
prompt = get_click_prompt(coordinate, click_state, click_mode) | |
input_points = prompt['input_point'] | |
input_labels = prompt['input_label'] | |
controls = {'length': length, | |
'sentiment': sentiment, | |
'factuality': factuality, | |
'language': language} | |
model = build_caption_anything_with_models( | |
args, | |
api_key="", | |
captioner=shared_captioner, | |
sam_model=shared_sam_model, | |
text_refiner=text_refiner, | |
session_id=iface.app_id | |
) | |
model.setup(image_embedding, original_size, input_size, is_image_set=True) | |
enable_wiki = True if enable_wiki in ['True', 'TRUE', 'true', True, 'Yes', 'YES', 'yes'] else False | |
out = model.inference(image_input, prompt, controls, disable_gpt=True, enable_wiki=enable_wiki) | |
state = state + [("Image point: {}, Input label: {}".format(prompt["input_point"], prompt["input_label"]), None)] | |
state = state + [(None, "raw_caption: {}".format(out['generated_captions']['raw_caption']))] | |
wiki = out['generated_captions'].get('wiki', "") | |
update_click_state(click_state, out['generated_captions']['raw_caption'], click_mode) | |
text = out['generated_captions']['raw_caption'] | |
input_mask = np.array(out['mask'].convert('P')) | |
image_input = mask_painter(np.array(image_input), input_mask) | |
origin_image_input = image_input | |
image_input = create_bubble_frame(image_input, text, (click_index[0], click_index[1]), input_mask, | |
input_points=input_points, input_labels=input_labels) | |
yield state, state, click_state, image_input, wiki | |
if not args.disable_gpt and model.text_refiner: | |
refined_caption = model.text_refiner.inference(query=text, controls=controls, context=out['context_captions'], | |
enable_wiki=enable_wiki) | |
# new_cap = 'Original: ' + text + '. Refined: ' + refined_caption['caption'] | |
new_cap = refined_caption['caption'] | |
wiki = refined_caption['wiki'] | |
state = state + [(None, f"caption: {new_cap}")] | |
refined_image_input = create_bubble_frame(origin_image_input, new_cap, (click_index[0], click_index[1]), | |
input_mask, | |
input_points=input_points, input_labels=input_labels) | |
yield state, state, click_state, refined_image_input, wiki | |
def get_sketch_prompt(mask: PIL.Image.Image, multi_mask=True): | |
""" | |
Get the prompt for the sketcher. | |
TODO: This is a temporary solution. We should cluster the sketch and get the bounding box of each cluster. | |
""" | |
mask = np.array(np.asarray(mask)[..., 0]) | |
mask[mask > 0] = 1 # Refine the mask, let all nonzero values be 1 | |
if not multi_mask: | |
y, x = np.where(mask == 1) | |
x1, y1 = np.min(x), np.min(y) | |
x2, y2 = np.max(x), np.max(y) | |
prompt = { | |
'prompt_type': ['box'], | |
'input_boxes': [ | |
[x1, y1, x2, y2] | |
] | |
} | |
return prompt | |
traversed = np.zeros_like(mask) | |
groups = np.zeros_like(mask) | |
max_group_id = 1 | |
# Iterate over all pixels | |
for x in range(mask.shape[0]): | |
for y in range(mask.shape[1]): | |
if traversed[x, y] == 1: | |
continue | |
if mask[x, y] == 0: | |
traversed[x, y] = 1 | |
else: | |
# If pixel is part of mask | |
groups[x, y] = max_group_id | |
stack = [(x, y)] | |
while stack: | |
i, j = stack.pop() | |
if traversed[i, j] == 1: | |
continue | |
traversed[i, j] = 1 | |
if mask[i, j] == 1: | |
groups[i, j] = max_group_id | |
for di, dj in [(1, 0), (-1, 0), (0, 1), (0, -1), (1, 1), (1, -1), (-1, 1), (-1, -1)]: | |
ni, nj = i + di, j + dj | |
traversed[i, j] = 1 | |
if 0 <= nj < mask.shape[1] and mask.shape[0] > ni >= 0 == traversed[ni, nj]: | |
stack.append((i + di, j + dj)) | |
max_group_id += 1 | |
# get the bounding box of each group | |
boxes = [] | |
for group in range(1, max_group_id): | |
y, x = np.where(groups == group) | |
x1, y1 = np.min(x), np.min(y) | |
x2, y2 = np.max(x), np.max(y) | |
boxes.append([x1, y1, x2, y2]) | |
prompt = { | |
'prompt_type': ['box'], | |
'input_boxes': boxes | |
} | |
return prompt | |
def inference_traject(sketcher_image, enable_wiki, language, sentiment, factuality, length, image_embedding, state, | |
original_size, input_size, text_refiner): | |
image_input, mask = sketcher_image['image'], sketcher_image['mask'] | |
prompt = get_sketch_prompt(mask, multi_mask=False) | |
boxes = prompt['input_boxes'] | |
controls = {'length': length, | |
'sentiment': sentiment, | |
'factuality': factuality, | |
'language': language} | |
model = build_caption_anything_with_models( | |
args, | |
api_key="", | |
captioner=shared_captioner, | |
sam_model=shared_sam_model, | |
text_refiner=text_refiner, | |
session_id=iface.app_id | |
) | |
model.setup(image_embedding, original_size, input_size, is_image_set=True) | |
enable_wiki = True if enable_wiki in ['True', 'TRUE', 'true', True, 'Yes', 'YES', 'yes'] else False | |
out = model.inference(image_input, prompt, controls, disable_gpt=True, enable_wiki=enable_wiki) | |
# Update components and states | |
state.append((f'Box: {boxes}', None)) | |
state.append((None, f'raw_caption: {out["generated_captions"]["raw_caption"]}')) | |
wiki = out['generated_captions'].get('wiki', "") | |
text = out['generated_captions']['raw_caption'] | |
input_mask = np.array(out['mask'].convert('P')) | |
image_input = mask_painter(np.array(image_input), input_mask) | |
origin_image_input = image_input | |
fake_click_index = (int((boxes[0][0] + boxes[0][2]) / 2), int((boxes[0][1] + boxes[0][3]) / 2)) | |
image_input = create_bubble_frame(image_input, text, fake_click_index, input_mask) | |
yield state, state, image_input, wiki | |
if not args.disable_gpt and model.text_refiner: | |
refined_caption = model.text_refiner.inference(query=text, controls=controls, context=out['context_captions'], | |
enable_wiki=enable_wiki) | |
new_cap = refined_caption['caption'] | |
wiki = refined_caption['wiki'] | |
state = state + [(None, f"caption: {new_cap}")] | |
refined_image_input = create_bubble_frame(origin_image_input, new_cap, fake_click_index, input_mask) | |
yield state, state, refined_image_input, wiki | |
def get_style(): | |
current_version = version.parse(gr.__version__) | |
if current_version <= version.parse('3.24.1'): | |
style = ''' | |
#image_sketcher{min-height:500px} | |
#image_sketcher [data-testid="image"], #image_sketcher [data-testid="image"] > div{min-height: 500px} | |
#image_upload{min-height:500px} | |
#image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 500px} | |
''' | |
elif current_version <= version.parse('3.27'): | |
style = ''' | |
#image_sketcher{min-height:500px} | |
#image_upload{min-height:500px} | |
''' | |
else: | |
style = None | |
return style | |
def create_ui(): | |
title = """<p><h1 align="center">Caption-Anything</h1></p> | |
""" | |
description = """<p>Gradio demo for Caption Anything, image to dense captioning generation with various language styles. To use it, simply upload your image, or click one of the examples to load them. Code: <a href="https://github.com/ttengwang/Caption-Anything">https://github.com/ttengwang/Caption-Anything</a> <a href="https://huggingface.co/spaces/TencentARC/Caption-Anything?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>""" | |
examples = [ | |
["test_images/img35.webp"], | |
["test_images/img2.jpg"], | |
["test_images/img5.jpg"], | |
["test_images/img12.jpg"], | |
["test_images/img14.jpg"], | |
["test_images/qingming3.jpeg"], | |
["test_images/img1.jpg"], | |
] | |
with gr.Blocks( | |
css=get_style() | |
) as iface: | |
state = gr.State([]) | |
click_state = gr.State([[], [], []]) | |
chat_state = gr.State([]) | |
origin_image = gr.State(None) | |
image_embedding = gr.State(None) | |
text_refiner = gr.State(None) | |
original_size = gr.State(None) | |
input_size = gr.State(None) | |
img_caption = gr.State(None) | |
gr.Markdown(title) | |
gr.Markdown(description) | |
with gr.Row(): | |
with gr.Column(scale=1.0): | |
with gr.Column(visible=False) as modules_not_need_gpt: | |
with gr.Tab("Click"): | |
image_input = gr.Image(type="pil", interactive=True, elem_id="image_upload") | |
example_image = gr.Image(type="pil", interactive=False, visible=False) | |
with gr.Row(scale=1.0): | |
with gr.Row(scale=0.4): | |
point_prompt = gr.Radio( | |
choices=["Positive", "Negative"], | |
value="Positive", | |
label="Point Prompt", | |
interactive=True) | |
click_mode = gr.Radio( | |
choices=["Continuous", "Single"], | |
value="Continuous", | |
label="Clicking Mode", | |
interactive=True) | |
with gr.Row(scale=0.4): | |
clear_button_click = gr.Button(value="Clear Clicks", interactive=True) | |
clear_button_image = gr.Button(value="Clear Image", interactive=True) | |
with gr.Tab("Trajectory (Beta)"): | |
sketcher_input = ImageSketcher(type="pil", interactive=True, brush_radius=20, | |
elem_id="image_sketcher") | |
with gr.Row(): | |
submit_button_sketcher = gr.Button(value="Submit", interactive=True) | |
with gr.Column(visible=False) as modules_need_gpt: | |
with gr.Row(scale=1.0): | |
language = gr.Dropdown( | |
['English', 'Chinese', 'French', "Spanish", "Arabic", "Portuguese", "Cantonese"], | |
value="English", label="Language", interactive=True) | |
sentiment = gr.Radio( | |
choices=["Positive", "Natural", "Negative"], | |
value="Natural", | |
label="Sentiment", | |
interactive=True, | |
) | |
with gr.Row(scale=1.0): | |
factuality = gr.Radio( | |
choices=["Factual", "Imagination"], | |
value="Factual", | |
label="Factuality", | |
interactive=True, | |
) | |
length = gr.Slider( | |
minimum=10, | |
maximum=80, | |
value=10, | |
step=1, | |
interactive=True, | |
label="Generated Caption Length", | |
) | |
enable_wiki = gr.Radio( | |
choices=["Yes", "No"], | |
value="No", | |
label="Enable Wiki", | |
interactive=True) | |
with gr.Column(visible=True) as modules_not_need_gpt3: | |
gr.Examples( | |
examples=examples, | |
inputs=[example_image], | |
) | |
with gr.Column(scale=0.5): | |
openai_api_key = gr.Textbox( | |
placeholder="Input openAI API key", | |
show_label=False, | |
label="OpenAI API Key", | |
lines=1, | |
type="password") | |
with gr.Row(scale=0.5): | |
enable_chatGPT_button = gr.Button(value="Run with ChatGPT", interactive=True, variant='primary') | |
disable_chatGPT_button = gr.Button(value="Run without ChatGPT (Faster)", interactive=True, | |
variant='primary') | |
with gr.Column(visible=False) as modules_need_gpt2: | |
wiki_output = gr.Textbox(lines=5, label="Wiki", max_lines=5) | |
with gr.Column(visible=False) as modules_not_need_gpt2: | |
chatbot = gr.Chatbot(label="Chat about Selected Object", ).style(height=550, scale=0.5) | |
with gr.Column(visible=False) as modules_need_gpt3: | |
chat_input = gr.Textbox(show_label=False, placeholder="Enter text and press Enter").style( | |
container=False) | |
with gr.Row(): | |
clear_button_text = gr.Button(value="Clear Text", interactive=True) | |
submit_button_text = gr.Button(value="Submit", interactive=True, variant="primary") | |
openai_api_key.submit(init_openai_api_key, inputs=[openai_api_key], | |
outputs=[modules_need_gpt, modules_need_gpt2, modules_need_gpt3, modules_not_need_gpt, | |
modules_not_need_gpt2, modules_not_need_gpt3, text_refiner]) | |
enable_chatGPT_button.click(init_openai_api_key, inputs=[openai_api_key], | |
outputs=[modules_need_gpt, modules_need_gpt2, modules_need_gpt3, | |
modules_not_need_gpt, | |
modules_not_need_gpt2, modules_not_need_gpt3, text_refiner]) | |
disable_chatGPT_button.click(init_openai_api_key, | |
outputs=[modules_need_gpt, modules_need_gpt2, modules_need_gpt3, | |
modules_not_need_gpt, | |
modules_not_need_gpt2, modules_not_need_gpt3, text_refiner]) | |
clear_button_click.click( | |
lambda x: ([[], [], []], x, ""), | |
[origin_image], | |
[click_state, image_input, wiki_output], | |
queue=False, | |
show_progress=False | |
) | |
clear_button_image.click( | |
lambda: (None, [], [], [], [[], [], []], "", "", ""), | |
[], | |
[image_input, chatbot, state, chat_state, click_state, wiki_output, origin_image, img_caption], | |
queue=False, | |
show_progress=False | |
) | |
clear_button_text.click( | |
lambda: ([], [], [[], [], [], []], []), | |
[], | |
[chatbot, state, click_state, chat_state], | |
queue=False, | |
show_progress=False | |
) | |
image_input.clear( | |
lambda: (None, [], [], [], [[], [], []], "", "", ""), | |
[], | |
[image_input, chatbot, state, chat_state, click_state, wiki_output, origin_image, img_caption], | |
queue=False, | |
show_progress=False | |
) | |
image_input.upload(upload_callback, [image_input, state], | |
[chatbot, state, chat_state, origin_image, click_state, image_input, sketcher_input, | |
image_embedding, original_size, input_size, img_caption]) | |
sketcher_input.upload(upload_callback, [sketcher_input, state], | |
[chatbot, state, chat_state, origin_image, click_state, image_input, sketcher_input, | |
image_embedding, original_size, input_size, img_caption]) | |
chat_input.submit(chat_with_points, [chat_input, click_state, chat_state, state, text_refiner, img_caption], | |
[chatbot, state, chat_state]) | |
chat_input.submit(lambda: "", None, chat_input) | |
example_image.change(upload_callback, [example_image, state], | |
[chatbot, state, chat_state, origin_image, click_state, image_input, sketcher_input, | |
image_embedding, original_size, input_size, img_caption]) | |
# select coordinate | |
image_input.select( | |
inference_click, | |
inputs=[ | |
origin_image, point_prompt, click_mode, enable_wiki, language, sentiment, factuality, length, | |
image_embedding, state, click_state, original_size, input_size, text_refiner | |
], | |
outputs=[chatbot, state, click_state, image_input, wiki_output], | |
show_progress=False, queue=True | |
) | |
submit_button_sketcher.click( | |
inference_traject, | |
inputs=[ | |
sketcher_input, enable_wiki, language, sentiment, factuality, length, image_embedding, state, | |
original_size, input_size, text_refiner | |
], | |
outputs=[chatbot, state, sketcher_input, wiki_output], | |
show_progress=False, queue=True | |
) | |
return iface | |
if __name__ == '__main__': | |
iface = create_ui() | |
iface.queue(concurrency_count=5, api_open=False, max_size=10) | |
iface.launch(server_name="0.0.0.0", enable_queue=True, server_port=args.port, share=args.gradio_share) | |