Spaces:
Runtime error
Runtime error
from captioner import build_captioner, BaseCaptioner | |
from segmenter import build_segmenter | |
from text_refiner import build_text_refiner | |
import os | |
import argparse | |
import pdb | |
import time | |
from PIL import Image | |
class CaptionAnything(): | |
def __init__(self, args): | |
self.args = args | |
self.captioner = build_captioner(args.captioner, args.device, args) | |
self.segmenter = build_segmenter(args.segmenter, args.device, args) | |
if not args.disable_gpt: | |
self.init_refiner() | |
def init_refiner(self): | |
if os.environ.get('OPENAI_API_KEY', None): | |
self.text_refiner = build_text_refiner(self.args.text_refiner, self.args.device, self.args) | |
def inference(self, image, prompt, controls, disable_gpt=False): | |
# segment with prompt | |
print("CA prompt: ", prompt, "CA controls",controls) | |
seg_mask = self.segmenter.inference(image, prompt)[0, ...] | |
mask_save_path = f'result/mask_{time.time()}.png' | |
if not os.path.exists(os.path.dirname(mask_save_path)): | |
os.makedirs(os.path.dirname(mask_save_path)) | |
new_p = Image.fromarray(seg_mask.astype('int') * 255.) | |
if new_p.mode != 'RGB': | |
new_p = new_p.convert('RGB') | |
new_p.save(mask_save_path) | |
print('seg_mask path: ', mask_save_path) | |
print("seg_mask.shape: ", seg_mask.shape) | |
# captioning with mask | |
if self.args.enable_reduce_tokens: | |
caption, crop_save_path = self.captioner.inference_with_reduced_tokens(image, seg_mask, crop_mode=self.args.seg_crop_mode, filter=self.args.clip_filter, regular_box = self.args.regular_box) | |
else: | |
caption, crop_save_path = self.captioner.inference_seg(image, seg_mask, crop_mode=self.args.seg_crop_mode, filter=self.args.clip_filter, regular_box = self.args.regular_box) | |
# refining with TextRefiner | |
context_captions = [] | |
if self.args.context_captions: | |
context_captions.append(self.captioner.inference(image)) | |
if not disable_gpt and hasattr(self, "text_refiner"): | |
refined_caption = self.text_refiner.inference(query=caption, controls=controls, context=context_captions) | |
else: | |
refined_caption = {'raw_caption': caption} | |
out = {'generated_captions': refined_caption, | |
'crop_save_path': crop_save_path, | |
'mask_save_path': mask_save_path, | |
'context_captions': context_captions} | |
return out | |
def parse_augment(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument('--captioner', type=str, default="blip") | |
parser.add_argument('--segmenter', type=str, default="base") | |
parser.add_argument('--text_refiner', type=str, default="base") | |
parser.add_argument('--segmenter_checkpoint', type=str, default="segmenter/sam_vit_h_4b8939.pth") | |
parser.add_argument('--seg_crop_mode', type=str, default="w_bg", choices=['wo_bg', 'w_bg'], help="whether to add or remove background of the image when captioning") | |
parser.add_argument('--clip_filter', action="store_true", help="use clip to filter bad captions") | |
parser.add_argument('--context_captions', action="store_true", help="use surrounding captions to enhance current caption (TODO)") | |
parser.add_argument('--regular_box', action="store_true", default = False, help="crop image with a regular box") | |
parser.add_argument('--device', type=str, default="cuda:0") | |
parser.add_argument('--port', type=int, default=6086, help="only useful when running gradio applications") | |
parser.add_argument('--debug', action="store_true") | |
parser.add_argument('--gradio_share', action="store_true") | |
parser.add_argument('--disable_gpt', action="store_true") | |
parser.add_argument('--enable_reduce_tokens', action="store_true", default=False) | |
parser.add_argument('--disable_reuse_features', action="store_true", default=False) | |
args = parser.parse_args() | |
if args.debug: | |
print(args) | |
return args | |
if __name__ == "__main__": | |
args = parse_augment() | |
# image_path = 'test_img/img3.jpg' | |
image_path = 'test_img/img13.jpg' | |
prompts = [ | |
{ | |
"prompt_type":["click"], | |
"input_point":[[500, 300], [1000, 500]], | |
"input_label":[1, 0], | |
"multimask_output":"True", | |
}, | |
{ | |
"prompt_type":["click"], | |
"input_point":[[900, 800]], | |
"input_label":[1], | |
"multimask_output":"True", | |
} | |
] | |
controls = { | |
"length": "30", | |
"sentiment": "positive", | |
# "imagination": "True", | |
"imagination": "False", | |
"language": "English", | |
} | |
model = CaptionAnything(args) | |
for prompt in prompts: | |
print('*'*30) | |
print('Image path: ', image_path) | |
image = Image.open(image_path) | |
print(image) | |
print('Visual controls (SAM prompt):\n', prompt) | |
print('Language controls:\n', controls) | |
out = model.inference(image_path, prompt, controls) | |