Spaces:
Runtime error
Runtime error
import torch | |
from PIL import Image, ImageDraw, ImageOps | |
from transformers import pipeline, BlipProcessor, BlipForConditionalGeneration, BlipForQuestionAnswering | |
import json | |
import pdb | |
import cv2 | |
import numpy as np | |
from typing import Union | |
import time | |
import clip | |
def boundary(inputs): | |
col = inputs.shape[1] | |
inputs = inputs.reshape(-1) | |
lens = len(inputs) | |
for i in range(lens): | |
if inputs[i] != False: | |
break | |
for j in range(lens): | |
if inputs[lens - 1 - j] != False: | |
break | |
start = i | |
end = lens - 1 - j | |
top = start // col | |
bottom = end // col | |
return top, bottom | |
def new_seg_to_box(seg_mask: Union[np.ndarray, Image.Image, str]): | |
if type(seg_mask) == str: | |
seg_mask = Image.open(seg_mask) | |
elif type(seg_mask) == np.ndarray: | |
seg_mask = Image.fromarray(seg_mask) | |
seg_mask = np.array(seg_mask) > 0 | |
size = max(seg_mask.shape[0], seg_mask.shape[1]) | |
top, bottom = boundary(seg_mask) | |
left, right = boundary(seg_mask.T) | |
return [left / size, top / size, right / size, bottom / size] | |
def seg_to_box(seg_mask: Union[np.ndarray, Image.Image, str]): | |
if type(seg_mask) == str: | |
seg_mask = cv2.imread(seg_mask, cv2.IMREAD_GRAYSCALE) | |
_, seg_mask = cv2.threshold(seg_mask, 127, 255, 0) | |
elif type(seg_mask) == np.ndarray: | |
assert seg_mask.ndim == 2 # only support single-channel segmentation mask | |
seg_mask = seg_mask.astype('uint8') | |
if seg_mask.dtype == 'bool': | |
seg_mask = seg_mask * 255 | |
contours, hierarchy = cv2.findContours(seg_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | |
contours = np.concatenate(contours, axis=0) | |
rect = cv2.minAreaRect(contours) | |
box = cv2.boxPoints(rect) | |
if rect[-1] >= 45: | |
newstart = box.argmin(axis=0)[1] # leftmost | |
else: | |
newstart = box.argmax(axis=0)[0] # topmost | |
box = np.concatenate([box[newstart:], box[:newstart]], axis=0) | |
box = np.int0(box) | |
return box | |
def get_w_h(rect_points): | |
w = np.linalg.norm(rect_points[0] - rect_points[1], ord=2).astype('int') | |
h = np.linalg.norm(rect_points[0] - rect_points[3], ord=2).astype('int') | |
return w, h | |
def cut_box(img, rect_points): | |
w, h = get_w_h(rect_points) | |
dst_pts = np.array([[h, 0], [h, w], [0, w], [0, 0],], dtype="float32") | |
transform = cv2.getPerspectiveTransform(rect_points.astype("float32"), dst_pts) | |
cropped_img = cv2.warpPerspective(img, transform, (h, w)) | |
return cropped_img | |
class BaseCaptioner: | |
def __init__(self, device, enable_filter=False): | |
print(f"Initializing ImageCaptioning to {device}") | |
self.device = device | |
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32 | |
self.processor = None | |
self.model = None | |
self.enable_filter = enable_filter | |
if enable_filter: | |
self.filter, self.preprocess = clip.load('ViT-B/32', device) | |
self.threshold = 0.2 | |
def filter_caption(self, image: Union[np.ndarray, Image.Image, str], caption: str): | |
if type(image) == str: # input path | |
image = Image.open(image) | |
elif type(image) == np.ndarray: | |
image = Image.fromarray(image) | |
image = self.preprocess(image).unsqueeze(0).to(self.device) # (1, 3, 224, 224) | |
text = clip.tokenize(caption).to(self.device) # (1, 77) | |
image_features = self.filter.encode_image(image) # (1, 512) | |
text_features = self.filter.encode_text(text) # (1, 512) | |
image_features /= image_features.norm(dim = -1, keepdim = True) | |
text_features /= text_features.norm(dim = -1, keepdim = True) | |
similarity = torch.matmul(image_features, text_features.transpose(1, 0)).item() | |
if similarity < self.threshold: | |
print('There seems to be nothing where you clicked.') | |
out = "" | |
else: | |
out = caption | |
print(f'Clip score of the caption is {similarity}') | |
return out | |
def inference(self, image: Union[np.ndarray, Image.Image, str], filter: bool=False): | |
raise NotImplementedError() | |
def inference_with_reduced_tokens(self, image: Union[np.ndarray, Image.Image, str], seg_mask, filter: bool=False): | |
raise NotImplementedError() | |
def inference_box(self, image: Union[np.ndarray, Image.Image, str], box: Union[list, np.ndarray], filter=False): | |
if type(image) == str: # input path | |
image = Image.open(image) | |
elif type(image) == np.ndarray: | |
image = Image.fromarray(image) | |
if np.array(box).size == 4: # [x0, y0, x1, y1], where (x0, y0), (x1, y1) represent top-left and bottom-right corners | |
size = max(image.width, image.height) | |
x1, y1, x2, y2 = box | |
image_crop = np.array(image.crop((x1 * size, y1 * size, x2 * size, y2 * size))) | |
elif np.array(box).size == 8: # four corners of an irregular rectangle | |
image_crop = cut_box(np.array(image), box) | |
crop_save_path = f'result/crop_{time.time()}.png' | |
Image.fromarray(image_crop).save(crop_save_path) | |
print(f'croped image saved in {crop_save_path}') | |
caption = self.inference(image_crop, filter) | |
return caption, crop_save_path | |
def inference_seg(self, image: Union[np.ndarray, str], seg_mask: Union[np.ndarray, Image.Image, str], crop_mode="w_bg", filter=False, regular_box = False): | |
if type(image) == str: | |
image = Image.open(image) | |
if type(seg_mask) == str: | |
seg_mask = Image.open(seg_mask) | |
elif type(seg_mask) == np.ndarray: | |
seg_mask = Image.fromarray(seg_mask) | |
seg_mask = seg_mask.resize(image.size) | |
seg_mask = np.array(seg_mask) > 0 | |
if crop_mode=="wo_bg": | |
image = np.array(image) * seg_mask[:,:,np.newaxis] | |
else: | |
image = np.array(image) | |
if regular_box: | |
min_area_box = new_seg_to_box(seg_mask) | |
else: | |
min_area_box = seg_to_box(seg_mask) | |
return self.inference_box(image, min_area_box, filter) | |
def generate_seg_cropped_image(self, image: Union[np.ndarray, str], seg_mask: Union[np.ndarray, Image.Image, str], crop_mode="w_bg", regular_box = False): | |
if type(image) == str: | |
image = Image.open(image) | |
if type(seg_mask) == str: | |
seg_mask = Image.open(seg_mask) | |
elif type(seg_mask) == np.ndarray: | |
seg_mask = Image.fromarray(seg_mask) | |
seg_mask = seg_mask.resize(image.size) | |
seg_mask = np.array(seg_mask) > 0 | |
if crop_mode=="wo_bg": | |
image = np.array(image) * seg_mask[:,:,np.newaxis] | |
else: | |
image = np.array(image) | |
if regular_box: | |
box = new_seg_to_box(seg_mask) | |
else: | |
box = seg_to_box(seg_mask) | |
if np.array(box).size == 4: # [x0, y0, x1, y1], where (x0, y0), (x1, y1) represent top-left and bottom-right corners | |
size = max(image.shape[0], image.shape[1]) | |
x1, y1, x2, y2 = box | |
image_crop = np.array(image.crop((x1 * size, y1 * size, x2 * size, y2 * size))) | |
elif np.array(box).size == 8: # four corners of an irregular rectangle | |
image_crop = cut_box(np.array(image), box) | |
crop_save_path = f'result/crop_{time.time()}.png' | |
Image.fromarray(image_crop).save(crop_save_path) | |
print(f'croped image saved in {crop_save_path}') | |
return crop_save_path | |
if __name__ == '__main__': | |
model = BaseCaptioner(device='cuda:0') | |
image_path = 'test_img/img2.jpg' | |
seg_mask = np.zeros((15,15)) | |
seg_mask[5:10, 5:10] = 1 | |
seg_mask = 'image/SAM/img10.jpg.raw_mask.png' | |
print(model.inference_seg(image_path, seg_mask)) | |