from io import BytesIO import string import gradio as gr import requests from caption_anything import CaptionAnything import torch import json import sys import argparse from caption_anything import parse_augment import numpy as np import PIL.ImageDraw as ImageDraw from image_editing_utils import create_bubble_frame import copy from tools import mask_painter from PIL import Image import os from captioner import build_captioner from segment_anything import sam_model_registry from text_refiner import build_text_refiner from segmenter import build_segmenter def download_checkpoint(url, folder, filename): os.makedirs(folder, exist_ok=True) filepath = os.path.join(folder, filename) if not os.path.exists(filepath): response = requests.get(url, stream=True) with open(filepath, "wb") as f: for chunk in response.iter_content(chunk_size=8192): if chunk: f.write(chunk) return filepath title = """

Caption-Anything

""" description = """

Gradio demo for Caption Anything, image to dense captioning generation with various language styles. To use it, simply upload your image, or click one of the examples to load them. Code: https://github.com/ttengwang/Caption-Anything Duplicate Space

""" examples = [ ["test_img/img35.webp"], ["test_img/img2.jpg"], ["test_img/img5.jpg"], ["test_img/img12.jpg"], ["test_img/img14.jpg"], ["test_img/img0.png"], ["test_img/img1.jpg"], ] seg_model_map = { 'base': 'vit_b', 'large': 'vit_l', 'huge': 'vit_h' } ckpt_url_map = { 'vit_b': 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth', 'vit_l': 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_l_0b3195.pth', 'vit_h': 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth' } os.makedirs('result', exist_ok=True) args = parse_augment() checkpoint_url = ckpt_url_map[seg_model_map[args.segmenter]] folder = "segmenter" filename = os.path.basename(checkpoint_url) args.segmenter_checkpoint = os.path.join(folder, filename) download_checkpoint(checkpoint_url, folder, filename) # args.device = 'cuda:5' # args.disable_gpt = True # args.enable_reduce_tokens = False # args.port=20322 # args.captioner = 'blip' # args.regular_box = True shared_captioner = build_captioner(args.captioner, args.device, args) shared_sam_model = sam_model_registry[seg_model_map[args.segmenter]](checkpoint=args.segmenter_checkpoint).to(args.device) def build_caption_anything_with_models(args, api_key="", captioner=None, sam_model=None, text_refiner=None, session_id=None): segmenter = build_segmenter(args.segmenter, args.device, args, model=sam_model) captioner = captioner if session_id is not None: print('Init caption anything for session {}'.format(session_id)) return CaptionAnything(args, api_key, captioner=captioner, segmenter=segmenter, text_refiner=text_refiner) def init_openai_api_key(api_key=""): text_refiner = None if api_key and len(api_key) > 30: try: text_refiner = build_text_refiner(args.text_refiner, args.device, args, api_key) text_refiner.llm('hi') # test except: text_refiner = None openai_available = text_refiner is not None return gr.update(visible = openai_available), gr.update(visible = openai_available), gr.update(visible = openai_available), gr.update(visible = True), gr.update(visible = True), gr.update(visible = True), text_refiner def get_prompt(chat_input, click_state, click_mode): inputs = json.loads(chat_input) if click_mode == 'Continuous': points = click_state[0] labels = click_state[1] for input in inputs: points.append(input[:2]) labels.append(input[2]) elif click_mode == 'Single': points = [] labels = [] for input in inputs: points.append(input[:2]) labels.append(input[2]) click_state[0] = points click_state[1] = labels else: raise NotImplementedError prompt = { "prompt_type":["click"], "input_point":click_state[0], "input_label":click_state[1], "multimask_output":"True", } return prompt def update_click_state(click_state, caption, click_mode): if click_mode == 'Continuous': click_state[2].append(caption) elif click_mode == 'Single': click_state[2] = [caption] else: raise NotImplementedError def chat_with_points(chat_input, click_state, chat_state, state, text_refiner, img_caption): if text_refiner is None: response = "Text refiner is not initilzed, please input openai api key." state = state + [(chat_input, response)] return state, state, chat_state points, labels, captions = click_state # point_chat_prompt = "I want you act as a chat bot in terms of image. I will give you some points (w, h) in the image and tell you what happed on the point in natural language. Note that (0, 0) refers to the top-left corner of the image, w refers to the width and h refers the height. You should chat with me based on the fact in the image instead of imagination. Now I tell you the points with their visual description:\n{points_with_caps}\nNow begin chatting!" suffix = '\nHuman: {chat_input}\nAI: ' qa_template = '\nHuman: {q}\nAI: {a}' # # "The image is of width {width} and height {height}." point_chat_prompt = "I am an AI trained to chat with you about an image. I am greate at what is going on in any image based on the image information your provide. The overall image description is \"{img_caption}\". You will also provide me objects in the image in details, i.e., their location and visual descriptions. Here are the locations and descriptions of events that happen in the image: {points_with_caps} \n Now, let's chat!" prev_visual_context = "" pos_points = [] pos_captions = [] for i in range(len(points)): if labels[i] == 1: pos_points.append(f"({points[i][0]}, {points[i][0]})") pos_captions.append(captions[i]) prev_visual_context = prev_visual_context + '\n' + 'There is an event described as \"{}\" locating at {}'.format(pos_captions[-1], ', '.join(pos_points)) context_length_thres = 500 prev_history = "" for i in range(len(chat_state)): q, a = chat_state[i] if len(prev_history) < context_length_thres: prev_history = prev_history + qa_template.format(**{"q": q, "a": a}) else: break chat_prompt = point_chat_prompt.format(**{"img_caption":img_caption,"points_with_caps": prev_visual_context}) + prev_history + suffix.format(**{"chat_input": chat_input}) print('\nchat_prompt: ', chat_prompt) response = text_refiner.llm(chat_prompt) state = state + [(chat_input, response)] chat_state = chat_state + [(chat_input, response)] return state, state, chat_state def inference_seg_cap(image_input, point_prompt, click_mode, enable_wiki, language, sentiment, factuality, length, image_embedding, state, click_state, original_size, input_size, text_refiner, evt:gr.SelectData): model = build_caption_anything_with_models( args, api_key="", captioner=shared_captioner, sam_model=shared_sam_model, text_refiner=text_refiner, session_id=iface.app_id ) model.segmenter.image_embedding = image_embedding model.segmenter.predictor.original_size = original_size model.segmenter.predictor.input_size = input_size model.segmenter.predictor.is_image_set = True if point_prompt == 'Positive': coordinate = "[[{}, {}, 1]]".format(str(evt.index[0]), str(evt.index[1])) else: coordinate = "[[{}, {}, 0]]".format(str(evt.index[0]), str(evt.index[1])) controls = {'length': length, 'sentiment': sentiment, 'factuality': factuality, 'language': language} # click_coordinate = "[[{}, {}, 1]]".format(str(evt.index[0]), str(evt.index[1])) # chat_input = click_coordinate prompt = get_prompt(coordinate, click_state, click_mode) print('prompt: ', prompt, 'controls: ', controls) input_points = prompt['input_point'] input_labels = prompt['input_label'] enable_wiki = True if enable_wiki in ['True', 'TRUE', 'true', True, 'Yes', 'YES', 'yes'] else False out = model.inference(image_input, prompt, controls, disable_gpt=True, enable_wiki=enable_wiki) state = state + [("Image point: {}, Input label: {}".format(prompt["input_point"], prompt["input_label"]), None)] # for k, v in out['generated_captions'].items(): # state = state + [(f'{k}: {v}', None)] state = state + [(None, "raw_caption: {}".format(out['generated_captions']['raw_caption']))] wiki = out['generated_captions'].get('wiki', "") update_click_state(click_state, out['generated_captions']['raw_caption'], click_mode) text = out['generated_captions']['raw_caption'] # draw = ImageDraw.Draw(image_input) # draw.text((evt.index[0], evt.index[1]), text, textcolor=(0,0,255), text_size=120) input_mask = np.array(out['mask'].convert('P')) image_input = mask_painter(np.array(image_input), input_mask) origin_image_input = image_input image_input = create_bubble_frame(image_input, text, (evt.index[0], evt.index[1]), input_mask, input_points=input_points, input_labels=input_labels) yield state, state, click_state, chat_input, image_input, wiki if not args.disable_gpt and model.text_refiner: refined_caption = model.text_refiner.inference(query=text, controls=controls, context=out['context_captions'], enable_wiki=enable_wiki) # new_cap = 'Original: ' + text + '. Refined: ' + refined_caption['caption'] new_cap = refined_caption['caption'] wiki = refined_caption['wiki'] state = state + [(None, f"caption: {new_cap}")] refined_image_input = create_bubble_frame(origin_image_input, new_cap, (evt.index[0], evt.index[1]), input_mask, input_points=input_points, input_labels=input_labels) yield state, state, click_state, chat_input, refined_image_input, wiki def upload_callback(image_input, state): chat_state = [] click_state = [[], [], []] res = 1024 width, height = image_input.size ratio = min(1.0 * res / max(width, height), 1.0) if ratio < 1.0: image_input = image_input.resize((int(width * ratio), int(height * ratio))) print('Scaling input image to {}'.format(image_input.size)) state = [] + [(None, 'Image size: ' + str(image_input.size))] model = build_caption_anything_with_models( args, api_key="", captioner=shared_captioner, sam_model=shared_sam_model, session_id=iface.app_id ) model.segmenter.set_image(image_input) image_embedding = model.segmenter.image_embedding original_size = model.segmenter.predictor.original_size input_size = model.segmenter.predictor.input_size img_caption, _ = model.captioner.inference_seg(image_input) return state, state, chat_state, image_input, click_state, image_input, image_embedding, original_size, input_size, img_caption with gr.Blocks( css=''' #image_upload{min-height:400px} #image_upload [data-testid="image"], #image_upload [data-testid="image"] > div{min-height: 600px} ''' ) as iface: state = gr.State([]) click_state = gr.State([[],[],[]]) chat_state = gr.State([]) origin_image = gr.State(None) image_embedding = gr.State(None) text_refiner = gr.State(None) original_size = gr.State(None) input_size = gr.State(None) img_caption = gr.State(None) gr.Markdown(title) gr.Markdown(description) with gr.Row(): with gr.Column(scale=1.0): with gr.Column(visible=False) as modules_not_need_gpt: image_input = gr.Image(type="pil", interactive=True, elem_id="image_upload") example_image = gr.Image(type="pil", interactive=False, visible=False) with gr.Row(scale=1.0): with gr.Row(scale=0.4): point_prompt = gr.Radio( choices=["Positive", "Negative"], value="Positive", label="Point Prompt", interactive=True) click_mode = gr.Radio( choices=["Continuous", "Single"], value="Continuous", label="Clicking Mode", interactive=True) with gr.Row(scale=0.4): clear_button_clike = gr.Button(value="Clear Clicks", interactive=True) clear_button_image = gr.Button(value="Clear Image", interactive=True) with gr.Column(visible=False) as modules_need_gpt: with gr.Row(scale=1.0): language = gr.Dropdown(['English', 'Chinese', 'French', "Spanish", "Arabic", "Portuguese", "Cantonese"], value="English", label="Language", interactive=True) sentiment = gr.Radio( choices=["Positive", "Natural", "Negative"], value="Natural", label="Sentiment", interactive=True, ) with gr.Row(scale=1.0): factuality = gr.Radio( choices=["Factual", "Imagination"], value="Factual", label="Factuality", interactive=True, ) length = gr.Slider( minimum=10, maximum=80, value=10, step=1, interactive=True, label="Generated Caption Length", ) enable_wiki = gr.Radio( choices=["Yes", "No"], value="No", label="Enable Wiki", interactive=True) with gr.Column(visible=True) as modules_not_need_gpt3: gr.Examples( examples=examples, inputs=[example_image], ) with gr.Column(scale=0.5): openai_api_key = gr.Textbox( placeholder="Input openAI API key", show_label=False, label = "OpenAI API Key", lines=1, type="password") with gr.Row(scale=0.5): enable_chatGPT_button = gr.Button(value="Run with ChatGPT", interactive=True, variant='primary') disable_chatGPT_button = gr.Button(value="Run without ChatGPT (Faster)", interactive=True, variant='primary') with gr.Column(visible=False) as modules_need_gpt2: wiki_output = gr.Textbox(lines=5, label="Wiki", max_lines=5) with gr.Column(visible=False) as modules_not_need_gpt2: chatbot = gr.Chatbot(label="Chat about Selected Object",).style(height=550,scale=0.5) with gr.Column(visible=False) as modules_need_gpt3: chat_input = gr.Textbox(show_label=False, placeholder="Enter text and press Enter").style(container=False) with gr.Row(): clear_button_text = gr.Button(value="Clear Text", interactive=True) submit_button_text = gr.Button(value="Submit", interactive=True, variant="primary") openai_api_key.submit(init_openai_api_key, inputs=[openai_api_key], outputs=[modules_need_gpt,modules_need_gpt2, modules_need_gpt3, modules_not_need_gpt, modules_not_need_gpt2, modules_not_need_gpt3, text_refiner]) enable_chatGPT_button.click(init_openai_api_key, inputs=[openai_api_key], outputs=[modules_need_gpt,modules_need_gpt2, modules_need_gpt3, modules_not_need_gpt, modules_not_need_gpt2, modules_not_need_gpt3, text_refiner]) disable_chatGPT_button.click(init_openai_api_key, outputs=[modules_need_gpt,modules_need_gpt2, modules_need_gpt3, modules_not_need_gpt, modules_not_need_gpt2, modules_not_need_gpt3, text_refiner]) clear_button_clike.click( lambda x: ([[], [], []], x, ""), [origin_image], [click_state, image_input, wiki_output], queue=False, show_progress=False ) clear_button_image.click( lambda: (None, [], [], [], [[], [], []], "", "", ""), [], [image_input, chatbot, state, chat_state, click_state, wiki_output, origin_image, img_caption], queue=False, show_progress=False ) clear_button_text.click( lambda: ([], [], [[], [], [], []], []), [], [chatbot, state, click_state, chat_state], queue=False, show_progress=False ) image_input.clear( lambda: (None, [], [], [], [[], [], []], "", "", ""), [], [image_input, chatbot, state, chat_state, click_state, wiki_output, origin_image, img_caption], queue=False, show_progress=False ) image_input.upload(upload_callback,[image_input, state], [chatbot, state, chat_state, origin_image, click_state, image_input, image_embedding, original_size, input_size, img_caption]) chat_input.submit(chat_with_points, [chat_input, click_state, chat_state, state, text_refiner, img_caption], [chatbot, state, chat_state]) chat_input.submit(lambda: "", None, chat_input) example_image.change(upload_callback,[example_image, state], [chatbot, state, chat_state, origin_image, click_state, image_input, image_embedding, original_size, input_size, img_caption]) # select coordinate image_input.select(inference_seg_cap, inputs=[ origin_image, point_prompt, click_mode, enable_wiki, language, sentiment, factuality, length, image_embedding, state, click_state, original_size, input_size, text_refiner ], outputs=[chatbot, state, click_state, chat_input, image_input, wiki_output], show_progress=False, queue=True) iface.queue(concurrency_count=5, api_open=False, max_size=10) iface.launch(server_name="0.0.0.0", enable_queue=True)