Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,778 Bytes
327be49 28b27d8 327be49 28b27d8 327be49 28b27d8 aa06b71 28b27d8 8978714 669fdc5 28b27d8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 |
import spaces
import argparse
import os
import tempfile
from functools import partial
import cv2
import gradio as gr
import imageio
import numpy as np
import torch
import torchvision
from omegaconf import OmegaConf
from PIL import Image, ImageDraw
from pytorch_lightning import seed_everything
import sys
import copy
from utils.gradio_utils import load_preprocess_model, preprocess_image
from ldm.util import instantiate_from_config, img2tensor
from customnet.ddim import DDIMSampler
from einops import rearrange
import math
#### Description ####
title = r"""<h1 align="center">CustomNet: Object Customization with Variable-Viewpoints in Text-to-Image Diffusion Models</h1>"""
description = r"""
<b>Official Gradio demo</b> for <a href='https://github.com/TencentARC/CustomNet' target='_blank'><b>CustomNet: Object Customization with Variable-Viewpoints in Text-to-Image Diffusion Models</b></a>.<br>
π₯ CustomNet is novel unified customization method that can generate harmonious customized images without
test-time optimization. CustomNet supports explicit viewpoint, location, text controls while ensuring
object identity preservation.<br>
π€ Try to customize the object gneration yourself!<br>
"""
article = r"""
If CustomNet is helpful, please help to β the <a href='https://github.com/TencentARC/CustomNet' target='_blank'>Github Repo</a>. Thanks!
[![GitHub Stars](https://img.shields.io/github/stars/TencentARC%2FCustomNet)](https://github.com/TencentARC/CustomNet)
---
π **Citation**
<br>
If our work is useful for your research, please consider citing:
```bibtex
@misc{yuan2023customnet,
title={CustomNet: Zero-shot Object Customization with Variable-Viewpoints in Text-to-Image Diffusion Models},
author={Ziyang Yuan and Mingdeng Cao and Xintao Wang and Zhongang Qi and Chun Yuan and Ying Shan},
year={2023},
eprint={2310.19784},
archivePrefix={arXiv},
primaryClass={cs.CV}
}
```
π§ **Contact**
<br>
If you have any questions, please feel free to reach me out at <b>[email protected]</b>.
"""
# input_img = None
# concat_img = None
# T = None
# prompt = None
negtive_prompt = ""
def send_input_to_concat(input_image):
W, H = input_image.size
# image_array[:, 0, :] = image_array[:, 0, :]
draw = ImageDraw.Draw(input_image)
draw.rectangle([(0,0),(H-1, W-1)], outline="red", width=8)
return input_image
def preprocess_input(preprocess_model, input_image):
# global input_img
processed_image = preprocess_image(preprocess_model, input_image)
# input_img = (processed_image / 255.0).astype(np.float32)
return processed_image
# return processed_image, processed_image
def adjust_location(x0, y0, x1, y1, input_image):
x_0 = min(x0, x1)
x_1 = max(x0, x1)
y_0 = min(y0, y1)
y_1 = max(y0, y1)
print(x0, y0, x1, y1)
print(x_0, y_0, x_1, y_1)
new_size = (x_1-x_0, y_1-y_0)
input_image = input_image.resize(new_size)
img_array = np.array(input_image)
white_background = np.zeros((256, 256, 3))
white_background[y0:y1, x0:x1, :] = img_array
img_array = white_background.astype(np.uint8)
concat_img = Image.fromarray(img_array)
draw = ImageDraw.Draw(concat_img)
draw.rectangle([(x0,y0),(x1,y1)], outline="red", width=5)
return x_0, y_0, x_1, y_1, concat_img
@spaces.GPU
def prepare_data(device, input_image, x0, y0, x1, y1, polar, azimuth, text):
if input_image.size[0] != 256 or input_image.size[1] != 256:
input_image = input_image.resize((256, 256))
input_image = np.array(input_image)
img_cond = img2tensor(input_image, bgr2rgb=False, float32=True).unsqueeze(0) / 255.
img_cond = img_cond*2-1
img_location = copy.deepcopy(img_cond)
input_im_padding = torch.ones_like(img_location)
x_0 = min(x0, x1)
x_1 = max(x0, x1)
y_0 = min(y0, y1)
y_1 = max(y0, y1)
print(x0, y0, x1, y1)
print(x_0, y_0, x_1, y_1)
img_location = torch.nn.functional.interpolate(img_location, (y_1-y_0, x_1-x_0), mode="bilinear")
input_im_padding[:,:, y_0:y_1, x_0:x_1] = img_location
img_location = input_im_padding
T = torch.tensor([[math.radians(polar), math.sin(math.radians(azimuth)), math.cos(math.radians(azimuth)), 0.0]]).unsqueeze(1)
batch = {
"image_cond": img_cond.to(device),
"image_location": img_location.to(device),
'T': T.to(device),
'text': [text],
}
return batch
@spaces.GPU
@torch.no_grad()
def run_generation(sampler, model, device, input_image, x0, y0, x1, y1, polar, azimuth, text, seed):
seed_everything(seed)
batch = prepare_data(device, input_image, x0, y0, x1, y1, polar, azimuth, text)
c = model.get_learned_conditioning(batch["image_cond"])
c = torch.cat([c, batch["T"]], dim=-1)
c = model.cc_projection(c)
## condition
cond = {}
cond['c_concat'] = [model.encode_first_stage((batch["image_location"])).mode().detach()]
cond['c_crossattn'] = [c]
text_embedding = model.text_encoder(batch["text"])
cond["c_crossattn"].append(text_embedding)
## null-condition
uc = {}
neg_prompt = ""
uc['c_concat'] = [torch.zeros(1, 4, 32, 32).to(c.device)]
uc['c_crossattn'] = [torch.zeros_like(c).to(c.device)]
uc_text_embedding = model.text_encoder([neg_prompt])
uc['c_crossattn'].append(uc_text_embedding)
## sample
shape = [4, 32, 32]
samples_latents, _ = sampler.sample(
S=50,
batch_size=1,
shape=shape,
verbose=False,
unconditional_guidance_scale=999, # useless
conditioning=cond,
unconditional_conditioning=uc,
cfg_type=0,
cfg_scale_dict={"img": 0., "text":0., "all": 3.0 }
)
x_samples = model.decode_first_stage(samples_latents)
x_samples = torch.clamp((x_samples + 1.0) / 2.0, min=0.0, max=1.0).cpu().numpy()
x_samples = rearrange(255.0 *x_samples[0], 'c h w -> h w c').astype(np.uint8)
output_image = Image.fromarray(x_samples)
return output_image
def load_example(input_image, x0, y0, x1, y1, polar, azimuth, prompt):
# print("AAAA")
# print(type(x0))
# print(type(polar))
return input_image, x0, y0, x1, y1, polar, azimuth, prompt
# @spaces.GPU
@torch.no_grad()
def main(args):
# load model
device = torch.device("cuda")
preprocess_model = load_preprocess_model()
config = OmegaConf.load("configs/config_customnet.yaml")
model = instantiate_from_config(config.model)
model_path='./customnet_v1.pt?download=true'
if not os.path.exists(model_path):
os.system(f'wget https://huggingface.co/TencentARC/CustomNet/resolve/main/customnet_v1.pt?download=true -P .')
ckpt = torch.load(model_path, map_location="cpu")
model.load_state_dict(ckpt)
del ckpt
model = model.to(device)
sampler = DDIMSampler(model, device=device)
# load demo
demo = gr.Blocks()
with demo:
gr.Markdown(title)
gr.Markdown(description)
with gr.Row():
## Left column
with gr.Column():
## step 1.
gr.Markdown("## Step 1: Upload an object image and process", show_label=False)
# with gr.Row(equal_height=True):
input_image = gr.Image(type="pil", interactive=True, elem_id="input_image", elem_classes='image', visible=True)
preprocess_botton = gr.Button(value="Need preprocess", visible=True)
## step 2.
gr.Markdown("## Step 2: Set up different controls ", show_label=False, visible=True)
gr.Markdown("### 1: Object Location", show_label=False, visible=True)
with gr.Row():
with gr.Column():
with gr.Row():
x0 = gr.Slider(minimum=0, maximum=256, step=1, label="X_0", value=0, interactive=True, visible=True)
y0 = gr.Slider(minimum=0, maximum=256, step=1, label="Y_0", value=0, interactive=True, visible=True)
with gr.Row():
x1 = gr.Slider(minimum=0, maximum=256, step=1, label="X_1", value=256, interactive=True, visible=True)
y1 = gr.Slider(minimum=0, maximum=256, step=1, label="Y_1", value=256, interactive=True, visible=True)
location_botton = gr.Button(value="Update Location ", visible=True)
location_image = gr.Image(type="pil", interactive=True, elem_id="location", elem_classes='image', visible=True)
gr.Markdown("### 2: Object Viewpoint", show_label=False, visible=True)
with gr.Row():
polar = gr.Slider(minimum=-90, maximum=90, step=-0.5, label="Polar Angle", value=0.0, visible=True)
azimuth = gr.Slider(minimum=-60, maximum=90, step=-0.5, label="Azimuth angle", value=0.0, visible=True)
gr.Markdown("### 3: Text", show_label=False, visible=True)
prompt = gr.Textbox(value="on the seaside", label="Prompt", interactive=True, visible=True)
## step 3.
gr.Markdown("## Step 3: Run Generation", show_label=False, visible=True)
seed = gr.Number(value=1234, precision=0, interactive=True, label="Seed", visible=True)
start = gr.Button(value="Run generation !", visible=True)
examples_full = [
["examples/0.jpg", 50, 50, 256, 256, 0, -30, "a backpack in the office"],
["examples/1.jpg", 20, 20, 256, 256, -25, -35, "a pair of shoes on dirt road"],
["examples/2.jpg", 0, 0, 256, 256, -15, -20, "a car on the beach"],
["examples/3.jpg", 0, 0, 256, 256, 0, 30, "in the jungle"],
["examples/4.jpg", 0, 0, 256, 256, 0, -30, "in the snow"],
["examples/5.jpg", 20, 20, 240, 240, 10, 20, "with mountain behind"],
]
## Right column
with gr.Column():
gr.Markdown("## Generation Results", show_label=False, visible=True)
output_image = gr.Image(type="pil", interactive=True, elem_id="output_image", elem_classes='image', visible=True)
gr.Examples(
examples=examples_full, # NOTE: elements must match inputs list!
fn=load_example,
inputs=[input_image, x0, y0, x1, y1, polar, azimuth, prompt],
outputs=[input_image, x0, y0, x1, y1, polar, azimuth, prompt],
cache_examples=False,
run_on_click=True,
)
gr.Markdown(article)
## function
input_image.change(send_input_to_concat, inputs=input_image, outputs=location_image)
preprocess_botton.click(partial(preprocess_input, preprocess_model), inputs=input_image, outputs=input_image)
location_botton.click(adjust_location,
inputs=[x0, y0, x1, y1, input_image],
outputs=[x0, y0, x1, y1, location_image])
start.click(partial(run_generation, sampler, model, device),
inputs=[input_image, x0, y0, x1, y1, polar, azimuth, prompt, seed],
outputs=output_image)
# demo.launch(server_name='0.0.0.0', share=False, server_port=args.port)
# demo.queue(concurrency_count=1, max_size=10)
demo.queue().launch()
if __name__=="__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--port", type=int, default=12345)
args = parser.parse_args()
main(args) |