File size: 5,590 Bytes
d711508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import inspect
from copy import deepcopy
from functools import update_wrapper
from types import MethodType

from .peft_model import PeftConfig, PeftModel


def update_forward_signature(model: PeftModel) -> None:
    """
    Updates the forward signature of the PeftModel to include parents class signature
        model (`PeftModel`): Peft model to update the forward signature

    Example:

    ```python
    >>> from transformers import WhisperForConditionalGeneration
    >>> from peft import get_peft_model, LoraConfig, update_forward_signature

    >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
    >>> peft_config = LoraConfig(r=8, lora_alpha=32, lora_dropout=0.1, target_modules=["q_proj", "v_proj"])

    >>> peft_model = get_peft_model(model, peft_config)
    >>> update_forward_signature(peft_model)
    ```
    """

    # Only update signature when the current forward signature only has *args and **kwargs
    current_signature = inspect.signature(model.forward)
    if (
        len(current_signature.parameters) == 2
        and "args" in current_signature.parameters
        and "kwargs" in current_signature.parameters
    ):
        forward = deepcopy(model.forward.__func__)
        update_wrapper(
            forward, type(model.get_base_model()).forward, assigned=("__doc__", "__name__", "__annotations__")
        )
        model.forward = MethodType(forward, model)


def update_generate_signature(model: PeftModel) -> None:
    """
    Updates the generate signature of a PeftModel with overriding generate to include parents class signature
        model (`PeftModel`): Peft model to update the generate signature

    Example:

    ```python
    >>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
    >>> from peft import get_peft_model, LoraConfig, TaskType, update_generate_signature

    >>> model_name_or_path = "bigscience/mt0-large"
    >>> tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
    >>> model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path)

    >>> peft_config = LoraConfig(
    ...     task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1
    ... )
    >>> peft_model = get_peft_model(model, peft_config)
    >>> update_generate_signature(peft_model)
    >>> help(peft_model.generate)
    ```
    """
    if not hasattr(model, "generate"):
        return
    current_signature = inspect.signature(model.generate)
    if (
        len(current_signature.parameters) == 2
        and "args" in current_signature.parameters
        and "kwargs" in current_signature.parameters
    ) or (len(current_signature.parameters) == 1 and "kwargs" in current_signature.parameters):
        generate = deepcopy(model.generate.__func__)
        update_wrapper(
            generate,
            type(model.get_base_model()).generate,
            assigned=("__doc__", "__name__", "__annotations__"),
        )
        model.generate = MethodType(generate, model)


def update_signature(model: PeftModel, method: str = "all") -> None:
    """
    Updates the signature of a PeftModel include parents class signature for forward or generate method
        model (`PeftModel`): Peft model to update generate or forward signature method (`str`): method to update
        signature choose one of "forward", "generate", "all"

    Example:
    ```python
    >>> from transformers import AutoModelForSeq2SeqLM, AutoTokenizer
    >>> from peft import get_peft_model, LoraConfig, TaskType, update_signature

    >>> model_name_or_path = "bigscience/mt0-large"
    >>> tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
    >>> model = AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path)

    >>> peft_config = LoraConfig(
    ...     task_type=TaskType.SEQ_2_SEQ_LM, inference_mode=False, r=8, lora_alpha=32, lora_dropout=0.1
    ... )
    >>> peft_model = get_peft_model(model, peft_config)
    >>> update_signature(peft_model)
    >>> help(peft_model.generate)
    ```
    """
    if method == "forward":
        update_forward_signature(model)
    elif method == "generate":
        update_generate_signature(model)
    elif method == "all":
        update_forward_signature(model)
        update_generate_signature(model)
    else:
        raise ValueError(f"method {method} is not supported please choose one of ['forward', 'generate', 'all']")


def check_if_peft_model(model_name_or_path: str) -> bool:
    """
    Check if the model is a PEFT model.

    Args:
        model_name_or_path (`str`):
            Model id to check, can be local or on the Hugging Face Hub.

    Returns:
        `bool`: True if the model is a PEFT model, False otherwise.
    """
    is_peft_model = True
    try:
        PeftConfig.from_pretrained(model_name_or_path)
    except Exception:
        # allow broad exceptions so that this works even if new exceptions are added on HF Hub side
        is_peft_model = False

    return is_peft_model