File size: 15,333 Bytes
d711508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention.py

import logging
from dataclasses import dataclass
from typing import Any, Dict, Optional

import torch
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models import ModelMixin
from diffusers.models.attention import AdaLayerNorm, Attention, FeedForward
from diffusers.utils import BaseOutput
from diffusers.utils.torch_utils import maybe_allow_in_graph
from einops import rearrange, repeat
from torch import Tensor, nn

logger = logging.getLogger(__name__)


@dataclass
class Transformer3DModelOutput(BaseOutput):
    sample: torch.FloatTensor


@maybe_allow_in_graph
class Transformer3DModel(ModelMixin, ConfigMixin):
    @register_to_config
    def __init__(
        self,
        num_attention_heads: int = 16,
        attention_head_dim: int = 88,
        in_channels: Optional[int] = None,
        num_layers: int = 1,
        dropout: float = 0.0,
        norm_num_groups: int = 32,
        cross_attention_dim: Optional[int] = None,
        attention_bias: bool = False,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        use_linear_projection: bool = False,
        only_cross_attention: bool = False,
        upcast_attention: bool = False,
        unet_use_cross_frame_attention=None,
        unet_use_temporal_attention=None,
    ):
        super().__init__()
        self.use_linear_projection = use_linear_projection
        self.num_attention_heads = num_attention_heads
        self.attention_head_dim = attention_head_dim
        inner_dim = num_attention_heads * attention_head_dim

        # Define input layers
        self.in_channels = in_channels

        self.norm = torch.nn.GroupNorm(
            num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True
        )
        if use_linear_projection:
            self.proj_in = nn.Linear(in_channels, inner_dim)
        else:
            self.proj_in = nn.Conv2d(
                in_channels, inner_dim, kernel_size=1, stride=1, padding=0
            )

        # Define transformers blocks
        self.transformer_blocks = nn.ModuleList(
            [
                BasicTransformerBlock(
                    inner_dim,
                    num_attention_heads,
                    attention_head_dim,
                    dropout=dropout,
                    cross_attention_dim=cross_attention_dim,
                    activation_fn=activation_fn,
                    num_embeds_ada_norm=num_embeds_ada_norm,
                    attention_bias=attention_bias,
                    only_cross_attention=only_cross_attention,
                    upcast_attention=upcast_attention,
                    unet_use_cross_frame_attention=unet_use_cross_frame_attention,
                    unet_use_temporal_attention=unet_use_temporal_attention,
                )
                for d in range(num_layers)
            ]
        )

        # 4. Define output layers
        if use_linear_projection:
            self.proj_out = nn.Linear(in_channels, inner_dim)
        else:
            self.proj_out = nn.Conv2d(
                inner_dim, in_channels, kernel_size=1, stride=1, padding=0
            )

    def forward(
        self,
        hidden_states: torch.Tensor,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        timestep: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        attention_mask: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.Tensor] = None,
        return_dict: bool = True,
    ):
        # validate input dim
        if hidden_states.dim() != 5:
            raise ValueError(
                f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}."
            )

        # ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
        #   we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
        #   we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
        # expects mask of shape:
        #   [batch, key_tokens]
        # adds singleton query_tokens dimension:
        #   [batch,                    1, key_tokens]
        # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
        #   [batch,  heads, query_tokens, key_tokens] (e.g. torch sdp attn)
        #   [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
        if attention_mask is not None and attention_mask.ndim == 2:
            # assume that mask is expressed as:
            #   (1 = keep,      0 = discard)
            # convert mask into a bias that can be added to attention scores:
            #       (keep = +0,     discard = -10000.0)
            attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
            attention_mask = attention_mask.unsqueeze(1)

        # convert encoder_attention_mask to a bias the same way we do for attention_mask
        if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
            encoder_attention_mask = (
                1 - encoder_attention_mask.to(hidden_states.dtype)
            ) * -10000.0
            encoder_attention_mask = encoder_attention_mask.unsqueeze(1)

        # shenanigans for motion module
        video_length = hidden_states.shape[2]
        hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w")
        encoder_hidden_states = repeat(
            encoder_hidden_states, "b n c -> (b f) n c", f=video_length
        )

        # 1. Input
        batch, _, height, width = hidden_states.shape
        residual = hidden_states

        hidden_states = self.norm(hidden_states)
        if not self.use_linear_projection:
            hidden_states = self.proj_in(hidden_states)
            inner_dim = hidden_states.shape[1]
            hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
                batch, height * width, inner_dim
            )
        else:
            inner_dim = hidden_states.shape[1]
            hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
                batch, height * width, inner_dim
            )
            hidden_states = self.proj_in(hidden_states)

        # 2. Blocks
        for block in self.transformer_blocks:
            hidden_states = block(
                hidden_states,
                attention_mask=attention_mask,
                encoder_hidden_states=encoder_hidden_states,
                timestep=timestep,
                video_length=video_length,
                encoder_attention_mask=encoder_attention_mask,
                cross_attention_kwargs=cross_attention_kwargs,
            )

        # 3. Output
        if not self.use_linear_projection:
            hidden_states = (
                hidden_states.reshape(batch, height, width, inner_dim)
                .permute(0, 3, 1, 2)
                .contiguous()
            )
            hidden_states = self.proj_out(hidden_states)
        else:
            hidden_states = self.proj_out(hidden_states)
            hidden_states = (
                hidden_states.reshape(batch, height, width, inner_dim)
                .permute(0, 3, 1, 2)
                .contiguous()
            )

        output = hidden_states + residual

        output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length)
        if not return_dict:
            return (output,)

        return Transformer3DModelOutput(sample=output)


@maybe_allow_in_graph
class BasicTransformerBlock(nn.Module):
    def __init__(
        self,
        dim: int,
        num_attention_heads: int,
        attention_head_dim: int,
        dropout: float = 0.0,
        cross_attention_dim: Optional[int] = None,
        activation_fn: str = "geglu",
        num_embeds_ada_norm: Optional[int] = None,
        attention_bias: bool = False,
        only_cross_attention: bool = False,
        upcast_attention: bool = False,
        norm_elementwise_affine: bool = True,
        unet_use_cross_frame_attention: bool = False,
        unet_use_temporal_attention: bool = False,
        final_dropout: bool = False,
    ):
        super().__init__()
        self.only_cross_attention = only_cross_attention
        self.use_ada_layer_norm = num_embeds_ada_norm is not None
        self.unet_use_cross_frame_attention = unet_use_cross_frame_attention
        self.unet_use_temporal_attention = unet_use_temporal_attention

        # Define 3 blocks. Each block has its own normalization layer.
        # Self-Attn / SC-Attn
        if self.use_ada_layer_norm:
            self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
        else:
            self.norm1 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)

        if unet_use_cross_frame_attention:
            # this isn't actually implemented anywhere in the AnimateDiff codebase or in Diffusers...
            raise NotImplementedError("SC-Attn is not implemented yet.")
        else:
            self.attn1 = Attention(
                query_dim=dim,
                cross_attention_dim=(
                    cross_attention_dim if only_cross_attention else None
                ),
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
                upcast_attention=upcast_attention,
            )

        # 2. Cross-Attn
        if cross_attention_dim is not None:
            self.norm2 = (
                AdaLayerNorm(dim, num_embeds_ada_norm)
                if self.use_ada_layer_norm
                else nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
            )
            self.attn2 = Attention(
                query_dim=dim,
                cross_attention_dim=cross_attention_dim,
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
                upcast_attention=upcast_attention,
            )  # is self-attn if encoder_hidden_states is none
        else:
            self.norm2 = None
            self.attn2 = None

        # 3. Feed-forward
        self.norm3 = nn.LayerNorm(dim, elementwise_affine=norm_elementwise_affine)
        self.ff = FeedForward(
            dim,
            dropout=dropout,
            activation_fn=activation_fn,
            final_dropout=final_dropout,
        )

        # 4. Temporal Attn
        assert unet_use_temporal_attention is not None
        if unet_use_temporal_attention:
            self.attn_temp = Attention(
                query_dim=dim,
                heads=num_attention_heads,
                dim_head=attention_head_dim,
                dropout=dropout,
                bias=attention_bias,
                upcast_attention=upcast_attention,
            )
            nn.init.zeros_(self.attn_temp.to_out[0].weight.data)
            if self.use_ada_layer_norm:
                self.norm1 = AdaLayerNorm(dim, num_embeds_ada_norm)
            else:
                self.norm1 = nn.LayerNorm(
                    dim, elementwise_affine=norm_elementwise_affine
                )

    def forward(
        self,
        hidden_states: torch.FloatTensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        timestep: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        video_length=None,
    ):
        # SparseCausal-Attention
        # Notice that normalization is always applied before the real computation in the following blocks.
        # 1. Self-Attention
        if self.use_ada_layer_norm:
            norm_hidden_states = self.norm1(hidden_states, timestep)
        else:
            norm_hidden_states = self.norm1(hidden_states)

        cross_attention_kwargs = (
            cross_attention_kwargs if cross_attention_kwargs is not None else {}
        )
        if self.unet_use_cross_frame_attention:
            cross_attention_kwargs["video_length"] = video_length

        attn_output = self.attn1(
            norm_hidden_states,
            encoder_hidden_states=(
                encoder_hidden_states if self.only_cross_attention else None
            ),
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )

        hidden_states = attn_output + hidden_states

        # 2. Cross-Attention
        if self.attn2 is not None:
            norm_hidden_states = (
                self.norm2(hidden_states, timestep)
                if self.use_ada_layer_norm
                else self.norm2(hidden_states)
            )

            attn_output = self.attn2(
                norm_hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=encoder_attention_mask,
                **cross_attention_kwargs,
            )
            hidden_states = attn_output + hidden_states

        # 3. Feed-forward
        hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states

        # 4. Temporal-Attention
        if self.unet_use_temporal_attention:
            d = hidden_states.shape[1]
            hidden_states = rearrange(
                hidden_states, "(b f) d c -> (b d) f c", f=video_length
            )
            norm_hidden_states = (
                self.norm_temp(hidden_states, timestep)
                if self.use_ada_layer_norm
                else self.norm_temp(hidden_states)
            )
            hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
            hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)

        return hidden_states
        hidden_states = attn_output + hidden_states

        # 2. Cross-Attention
        if self.attn2 is not None:
            norm_hidden_states = (
                self.norm2(hidden_states, timestep)
                if self.use_ada_layer_norm
                else self.norm2(hidden_states)
            )

            attn_output = self.attn2(
                norm_hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=encoder_attention_mask,
                **cross_attention_kwargs,
            )
            hidden_states = attn_output + hidden_states

        # 3. Feed-forward
        hidden_states = self.ff(self.norm3(hidden_states)) + hidden_states

        # 4. Temporal-Attention
        if self.unet_use_temporal_attention:
            d = hidden_states.shape[1]
            hidden_states = rearrange(
                hidden_states, "(b f) d c -> (b d) f c", f=video_length
            )
            norm_hidden_states = (
                self.norm_temp(hidden_states, timestep)
                if self.use_ada_layer_norm
                else self.norm_temp(hidden_states)
            )
            hidden_states = self.attn_temp(norm_hidden_states) + hidden_states
            hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d)

        return hidden_states