Spaces:
Running
on
Zero
Running
on
Zero
File size: 26,048 Bytes
d711508 be61342 d711508 be61342 d711508 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 |
# Adapted from https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/unet_2d_condition.py
import json
import os
from dataclasses import dataclass
from os import PathLike
from pathlib import Path
from typing import Any, Dict, List, Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.loaders import UNet2DConditionLoadersMixin, PeftAdapterMixin
from diffusers.models import ModelMixin
from diffusers.models.attention_processor import AttentionProcessor
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
from diffusers.utils import SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, BaseOutput, logging
from safetensors.torch import load_file
from torch import Tensor, nn
from .resnet import InflatedConv3d, InflatedGroupNorm
from .unet_blocks import (
CrossAttnDownBlock3D,
CrossAttnUpBlock3D,
DownBlock3D,
UNetMidBlock3DCrossAttn,
UpBlock3D,
get_down_block,
get_up_block,
)
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
@dataclass
class UNet3DConditionFlowModelOutput(BaseOutput):
sample: torch.FloatTensor
class UNet3DConditionFlowModel(ModelMixin, ConfigMixin, UNet2DConditionLoadersMixin, PeftAdapterMixin):
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
sample_size: Optional[int] = None,
in_channels: int = 4,
out_channels: int = 4,
center_input_sample: bool = False,
flip_sin_to_cos: bool = True,
freq_shift: int = 0,
down_block_types: Tuple[str] = (
"CrossAttnDownBlock3D",
"CrossAttnDownBlock3D",
"CrossAttnDownBlock3D",
"DownBlock3D",
),
mid_block_type: str = "UNetMidBlock3DCrossAttn",
up_block_types: Tuple[str] = (
"UpBlock3D",
"CrossAttnUpBlock3D",
"CrossAttnUpBlock3D",
"CrossAttnUpBlock3D"
),
only_cross_attention: Union[bool, Tuple[bool]] = False,
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
layers_per_block: int = 2,
downsample_padding: int = 1,
mid_block_scale_factor: float = 1,
act_fn: str = "silu",
norm_num_groups: int = 32,
norm_eps: float = 1e-5,
cross_attention_dim: int = 1280,
attention_head_dim: Union[int, Tuple[int]] = 8,
dual_cross_attention: bool = False,
use_linear_projection: bool = False,
class_embed_type: Optional[str] = None,
num_class_embeds: Optional[int] = None,
upcast_attention: bool = False,
resnet_time_scale_shift: str = "default",
use_inflated_groupnorm=False,
# Additional
use_motion_module = False,
motion_module_resolutions = ( 1,2,4,8 ),
motion_module_mid_block = False,
motion_module_decoder_only = False,
motion_module_type = None,
motion_module_kwargs = {},
unet_use_cross_frame_attention = False,
unet_use_temporal_attention = False,
):
super().__init__()
self.sample_size = sample_size
time_embed_dim = block_out_channels[0] * 4
# input
self.conv_in = InflatedConv3d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
# time
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
timestep_input_dim = block_out_channels[0]
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
# class embedding
if class_embed_type is None and num_class_embeds is not None:
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
elif class_embed_type == "timestep":
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
elif class_embed_type == "identity":
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
else:
self.class_embedding = None
self.down_blocks = nn.ModuleList([])
self.mid_block = None
self.up_blocks = nn.ModuleList([])
if isinstance(only_cross_attention, bool):
only_cross_attention = [only_cross_attention] * len(down_block_types)
if isinstance(attention_head_dim, int):
attention_head_dim = (attention_head_dim,) * len(down_block_types)
# down
output_channel = block_out_channels[0]
for i, down_block_type in enumerate(down_block_types):
res = 2 ** i
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
down_block = get_down_block(
down_block_type,
num_layers=layers_per_block,
in_channels=input_channel,
out_channels=output_channel,
temb_channels=time_embed_dim,
add_downsample=not is_final_block,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
attn_num_head_channels=attention_head_dim[i],
downsample_padding=downsample_padding,
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention[i],
upcast_attention=upcast_attention,
resnet_time_scale_shift=resnet_time_scale_shift,
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
unet_use_temporal_attention=unet_use_temporal_attention,
use_inflated_groupnorm=use_inflated_groupnorm,
use_motion_module=use_motion_module and (res in motion_module_resolutions) and (not motion_module_decoder_only),
motion_module_type=motion_module_type,
motion_module_kwargs=motion_module_kwargs,
)
self.down_blocks.append(down_block)
# mid
if mid_block_type == "UNetMidBlock3DCrossAttn":
self.mid_block = UNetMidBlock3DCrossAttn(
in_channels=block_out_channels[-1],
temb_channels=time_embed_dim,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
output_scale_factor=mid_block_scale_factor,
resnet_time_scale_shift=resnet_time_scale_shift,
cross_attention_dim=cross_attention_dim,
attn_num_head_channels=attention_head_dim[-1],
resnet_groups=norm_num_groups,
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
upcast_attention=upcast_attention,
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
unet_use_temporal_attention=unet_use_temporal_attention,
use_inflated_groupnorm=use_inflated_groupnorm,
use_motion_module=use_motion_module and motion_module_mid_block,
motion_module_type=motion_module_type,
motion_module_kwargs=motion_module_kwargs,
)
else:
raise ValueError(f"unknown mid_block_type : {mid_block_type}")
# count how many layers upsample the videos
self.num_upsamplers = 0
# up
reversed_block_out_channels = list(reversed(block_out_channels))
reversed_attention_head_dim = list(reversed(attention_head_dim))
only_cross_attention = list(reversed(only_cross_attention))
output_channel = reversed_block_out_channels[0]
for i, up_block_type in enumerate(up_block_types):
res = 2 ** (3 - i)
is_final_block = i == len(block_out_channels) - 1
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
# add upsample block for all BUT final layer
if not is_final_block:
add_upsample = True
self.num_upsamplers += 1
else:
add_upsample = False
up_block = get_up_block(
up_block_type,
num_layers=layers_per_block + 1,
in_channels=input_channel,
out_channels=output_channel,
prev_output_channel=prev_output_channel,
temb_channels=time_embed_dim,
add_upsample=add_upsample,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
attn_num_head_channels=reversed_attention_head_dim[i],
dual_cross_attention=dual_cross_attention,
use_linear_projection=use_linear_projection,
only_cross_attention=only_cross_attention[i],
upcast_attention=upcast_attention,
resnet_time_scale_shift=resnet_time_scale_shift,
unet_use_cross_frame_attention=unet_use_cross_frame_attention,
unet_use_temporal_attention=unet_use_temporal_attention,
use_inflated_groupnorm=use_inflated_groupnorm,
use_motion_module=use_motion_module and (res in motion_module_resolutions),
motion_module_type=motion_module_type,
motion_module_kwargs=motion_module_kwargs,
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
# out
if use_inflated_groupnorm:
self.conv_norm_out = InflatedGroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
else:
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
self.conv_act = nn.SiLU()
self.conv_out = InflatedConv3d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
def set_attention_slice(self, slice_size):
r"""
Enable sliced attention computation.
When this option is enabled, the attention module will split the input tensor in slices, to compute attention
in several steps. This is useful to save some memory in exchange for a small speed decrease.
Args:
slice_size (`str` or `int` or `list(int)`, *optional*, defaults to `"auto"`):
When `"auto"`, halves the input to the attention heads, so attention will be computed in two steps. If
`"max"`, maxium amount of memory will be saved by running only one slice at a time. If a number is
provided, uses as many slices as `attention_head_dim // slice_size`. In this case, `attention_head_dim`
must be a multiple of `slice_size`.
"""
sliceable_head_dims = []
def fn_recursive_retrieve_slicable_dims(module: torch.nn.Module):
if hasattr(module, "set_attention_slice"):
sliceable_head_dims.append(module.sliceable_head_dim)
for child in module.children():
fn_recursive_retrieve_slicable_dims(child)
# retrieve number of attention layers
for module in self.children():
fn_recursive_retrieve_slicable_dims(module)
num_slicable_layers = len(sliceable_head_dims)
if slice_size == "auto":
# half the attention head size is usually a good trade-off between
# speed and memory
slice_size = [dim // 2 for dim in sliceable_head_dims]
elif slice_size == "max":
# make smallest slice possible
slice_size = num_slicable_layers * [1]
slice_size = num_slicable_layers * [slice_size] if not isinstance(slice_size, list) else slice_size
if len(slice_size) != len(sliceable_head_dims):
raise ValueError(
f"You have provided {len(slice_size)}, but {self.config} has {len(sliceable_head_dims)} different"
f" attention layers. Make sure to match `len(slice_size)` to be {len(sliceable_head_dims)}."
)
for i in range(len(slice_size)):
size = slice_size[i]
dim = sliceable_head_dims[i]
if size is not None and size > dim:
raise ValueError(f"size {size} has to be smaller or equal to {dim}.")
# Recursively walk through all the children.
# Any children which exposes the set_attention_slice method
# gets the message
def fn_recursive_set_attention_slice(module: torch.nn.Module, slice_size: List[int]):
if hasattr(module, "set_attention_slice"):
module.set_attention_slice(slice_size.pop())
for child in module.children():
fn_recursive_set_attention_slice(child, slice_size)
reversed_slice_size = list(reversed(slice_size))
for module in self.children():
fn_recursive_set_attention_slice(module, reversed_slice_size)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (CrossAttnDownBlock3D, DownBlock3D, CrossAttnUpBlock3D, UpBlock3D)):
module.gradient_checkpointing = value
def get_image_controlnet(self, controlnet_noisy_latents, timesteps,
encoder_hidden_states=None,
controlnet_cond=None,
conditioning_mask=None,
conditioning_scale=None,
guess_mode=False,
return_dict=False,):
down_block_additional_residuals, mid_block_additional_residual = self.image_controlnet(
controlnet_noisy_latents, timesteps,
encoder_hidden_states=encoder_hidden_states,
controlnet_cond=controlnet_cond,
conditioning_mask=conditioning_mask,
conditioning_scale=conditioning_scale,
guess_mode=guess_mode,
return_dict=return_dict,
)
return down_block_additional_residuals, mid_block_additional_residual
def get_flow_controlnet(self, controlnet_noisy_latents, timesteps,
encoder_hidden_states=None,
controlnet_cond=None,
conditioning_mask=None,
conditioning_scale=None,
guess_mode=False,
return_dict=False,):
down_block_additional_residuals, mid_block_additional_residual = self.omcm_controlnet(
controlnet_noisy_latents, timesteps,
encoder_hidden_states=encoder_hidden_states,
controlnet_cond=controlnet_cond,
conditioning_mask=conditioning_mask,
conditioning_scale=conditioning_scale,
guess_mode=guess_mode,
return_dict=return_dict,
)
return down_block_additional_residuals, mid_block_additional_residual
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: torch.Tensor,
class_labels: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
# support image controlnet
down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
mid_block_additional_residual: Optional[torch.Tensor] = None,
# support flow controlnet
flow_down_block_additional_residuals: Optional[Tuple[torch.Tensor]] = None,
flow_mid_block_additional_residual: Optional[torch.Tensor] = None,
return_dict: bool = True,
) -> Union[UNet3DConditionFlowModelOutput, Tuple]:
r"""
Args:
sample (`torch.FloatTensor`): (batch, channel, height, width) noisy inputs tensor
timestep (`torch.FloatTensor` or `float` or `int`): (batch) timesteps
encoder_hidden_states (`torch.FloatTensor`): (batch, sequence_length, feature_dim) encoder hidden states
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain tuple.
Returns:
[`~models.unet_2d_condition.UNet2DConditionOutput`] or `tuple`:
[`~models.unet_2d_condition.UNet2DConditionOutput`] if `return_dict` is True, otherwise a `tuple`. When
returning a tuple, the first element is the sample tensor.
"""
# By default samples have to be AT least a multiple of the overall upsampling factor.
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
# However, the upsampling interpolation output size can be forced to fit any upsampling size
# on the fly if necessary.
default_overall_up_factor = 2**self.num_upsamplers
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
forward_upsample_size = False
upsample_size = None
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
logger.info("Forward upsample size to force interpolation output size.")
forward_upsample_size = True
# prepare attention_mask
if attention_mask is not None:
attention_mask = (1 - attention_mask.to(sample.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# center input if necessary
if self.config.center_input_sample:
sample = 2 * sample - 1.0
# time
timesteps = timestep
if not torch.is_tensor(timesteps):
# This would be a good case for the `match` statement (Python 3.10+)
is_mps = sample.device.type == "mps"
if isinstance(timestep, float):
dtype = torch.float32 if is_mps else torch.float64
else:
dtype = torch.int32 if is_mps else torch.int64
timesteps = torch.tensor([timesteps], dtype=dtype, device=sample.device)
elif len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])
t_emb = self.time_proj(timesteps)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=self.dtype)
emb = self.time_embedding(t_emb)
if self.class_embedding is not None:
if class_labels is None:
raise ValueError("class_labels should be provided when num_class_embeds > 0")
if self.config.class_embed_type == "timestep":
class_labels = self.time_proj(class_labels)
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
emb = emb + class_emb
# pre-process
sample = self.conv_in(sample)
# down
down_block_res_samples = (sample,)
for downsample_block in self.down_blocks:
if hasattr(downsample_block, "has_cross_attention") and downsample_block.has_cross_attention:
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
attention_mask=attention_mask,
)
else:
sample, res_samples = downsample_block(hidden_states=sample, temb=emb, encoder_hidden_states=encoder_hidden_states)
down_block_res_samples += res_samples
# support controlnet
# image controlnet
down_block_res_samples = list(down_block_res_samples)
if down_block_additional_residuals is not None:
for i, down_block_additional_residual in enumerate(down_block_additional_residuals):
if down_block_additional_residual.dim() == 4: # boardcast
down_block_additional_residual = down_block_additional_residual.unsqueeze(2)
down_block_res_samples[i] = down_block_res_samples[i] + down_block_additional_residual
# flow controlnet
if flow_down_block_additional_residuals is not None:
for i, down_block_additional_residual in enumerate(flow_down_block_additional_residuals):
if down_block_additional_residual.dim() == 4: # boardcast
down_block_additional_residual = down_block_additional_residual.unsqueeze(2)
down_block_res_samples[i] = down_block_res_samples[i] + down_block_additional_residual
# mid
sample = self.mid_block(
sample, emb, encoder_hidden_states=encoder_hidden_states, attention_mask=attention_mask
)
# support controlnet
# image controlnet
if mid_block_additional_residual is not None:
if mid_block_additional_residual.dim() == 4: # boardcast
mid_block_additional_residual = mid_block_additional_residual.unsqueeze(2)
sample = sample + mid_block_additional_residual
# flow controlnet
if flow_mid_block_additional_residual is not None:
if flow_mid_block_additional_residual.dim() == 4: # boardcast
flow_mid_block_additional_residual = flow_mid_block_additional_residual.unsqueeze(2)
sample = sample + flow_mid_block_additional_residual
# up
for i, upsample_block in enumerate(self.up_blocks):
is_final_block = i == len(self.up_blocks) - 1
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
# if we have not reached the final block and need to forward the
# upsample size, we do it here
if not is_final_block and forward_upsample_size:
upsample_size = down_block_res_samples[-1].shape[2:]
if hasattr(upsample_block, "has_cross_attention") and upsample_block.has_cross_attention:
sample = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
encoder_hidden_states=encoder_hidden_states,
upsample_size=upsample_size,
attention_mask=attention_mask,
)
else:
sample = upsample_block(
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size, encoder_hidden_states=encoder_hidden_states,
)
# post-process
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
if not return_dict:
return (sample,)
return UNet3DConditionFlowModelOutput(sample=sample)
@classmethod
def from_pretrained_2d(cls, pretrained_model_path, subfolder=None, unet_additional_kwargs=None):
if subfolder is not None:
pretrained_model_path = os.path.join(pretrained_model_path, subfolder)
print(f"loaded 3D unet's pretrained weights from {pretrained_model_path} ...")
config_file = os.path.join(pretrained_model_path, 'config.json')
if not os.path.isfile(config_file):
raise RuntimeError(f"{config_file} does not exist")
with open(config_file, "r") as f:
config = json.load(f)
config["_class_name"] = cls.__name__
config["down_block_types"] = [
"CrossAttnDownBlock3D",
"CrossAttnDownBlock3D",
"CrossAttnDownBlock3D",
"DownBlock3D"
]
config["up_block_types"] = [
"UpBlock3D",
"CrossAttnUpBlock3D",
"CrossAttnUpBlock3D",
"CrossAttnUpBlock3D"
]
# from diffusers.utils import WEIGHTS_NAME
model = cls.from_config(config, **unet_additional_kwargs)
model_file = os.path.join(pretrained_model_path, "unet.ckpt")
if not os.path.isfile(model_file):
raise RuntimeError(f"{model_file} does not exist")
state_dict = torch.load(model_file, map_location="cpu")
m, u = model.load_state_dict(state_dict, strict=False)
print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
motion_params = [p.numel() if "motion_modules." in n else 0 for n,p in model.named_parameters()]
motion_name = [n for n in model.state_dict().keys() if "motion_modules." in n]
print(f"### Motion Module Parameters: {sum(motion_params) / 1e6} M")
print(f"### Motion Module keys: {len(motion_name)}")
unnorlmal = []
for n in m:
if n not in motion_name:
unnorlmal.append(n)
return model
'motion_modules.' in 'up_blocks.3.motion_modules.2.temporal_transformer.transformer_blocks.0.attention_blocks.1.pos_encoder.pe' |