Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,863 Bytes
d711508 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 |
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import warnings
from typing import Any, List, Optional
import packaging
import torch
import transformers
from torch import nn
from peft.tuners.lora import LoraLayer
from peft.tuners.tuners_utils import check_adapters_to_merge
from peft.utils import transpose
if packaging.version.parse(transformers.__version__) >= packaging.version.parse("4.33.0"):
from transformers.integrations import deepspeed_config
else:
from transformers.deepspeed import deepspeed_config
class AdaLoraLayer(LoraLayer):
# List all names of layers that may contain adapter weights
# Note: ranknum doesn't need to be included as it is not an nn.Module
adapter_layer_names = ("lora_A", "lora_B", "lora_E", "lora_embedding_A", "lora_embedding_B")
# other_param_names is defined in LoraLayer
def __init__(self, base_layer: nn.Module) -> None:
super().__init__(base_layer)
self.lora_E = nn.ParameterDict({})
self.lora_A = nn.ParameterDict({})
self.lora_B = nn.ParameterDict({})
self.ranknum = nn.ParameterDict({})
def update_layer(self, adapter_name, r, lora_alpha, lora_dropout, init_lora_weights):
if r < 0:
# note: r == 0 is allowed for AdaLora, see #1539
raise ValueError(f"`r` should be a positive integer or 0, but the value passed is {r}")
self.r[adapter_name] = r
self.lora_alpha[adapter_name] = lora_alpha
if lora_dropout > 0.0:
lora_dropout_layer = nn.Dropout(p=lora_dropout)
else:
lora_dropout_layer = nn.Identity()
self.lora_dropout[adapter_name] = lora_dropout_layer
# Actual trainable parameters
# Right singular vectors
self.lora_A[adapter_name] = nn.Parameter(torch.randn(r, self.in_features))
# Singular values
self.lora_E[adapter_name] = nn.Parameter(torch.randn(r, 1))
# Left singular vectors
self.lora_B[adapter_name] = nn.Parameter(torch.randn(self.out_features, r))
# The current rank
self.ranknum[adapter_name] = nn.Parameter(torch.randn(1), requires_grad=False)
self.ranknum[adapter_name].data.fill_(float(r))
self.ranknum[adapter_name].requires_grad = False
self.scaling[adapter_name] = lora_alpha if lora_alpha > 0 else float(r)
if init_lora_weights:
self.reset_lora_parameters(adapter_name)
if hasattr(self.get_base_layer(), "qweight"):
# QuantLinear
self.to(self.get_base_layer().qweight.device)
else:
self.to(self.get_base_layer().weight.device)
self.set_adapter(self.active_adapters)
def reset_lora_parameters(self, adapter_name):
if adapter_name in self.lora_A.keys():
nn.init.normal_(self.lora_E[adapter_name], mean=0.0, std=0.02)
nn.init.normal_(self.lora_A[adapter_name], mean=0.0, std=0.02)
nn.init.normal_(self.lora_B[adapter_name], mean=0.0, std=0.02)
class SVDLinear(nn.Module, AdaLoraLayer):
# SVD-based adaptation by a dense layer
def __init__(
self,
base_layer: nn.Module,
adapter_name: str,
r: int = 0,
lora_alpha: int = 1,
lora_dropout: float = 0.0,
fan_in_fan_out: bool = False,
init_lora_weights: bool = True,
**kwargs,
) -> None:
super().__init__()
AdaLoraLayer.__init__(self, base_layer)
# Freezing the pre-trained weight matrix
self.get_base_layer().weight.requires_grad = False
self.fan_in_fan_out = fan_in_fan_out
self._active_adapter = adapter_name
self.update_layer(adapter_name, r, lora_alpha, lora_dropout, init_lora_weights)
def merge(self, safe_merge: bool = False, adapter_names: Optional[List[str]] = None) -> None:
"""
Merge the active adapter weights into the base weights
Args:
safe_merge (`bool`, *optional*):
If True, the merge operation will be performed in a copy of the original weights and check for NaNs
before merging the weights. This is useful if you want to check if the merge operation will produce
NaNs. Defaults to `False`.
adapter_names (`List[str]`, *optional*):
The list of adapter names that should be merged. If None, all active adapters will be merged. Defaults
to `None`.
"""
adapter_names = check_adapters_to_merge(self, adapter_names)
if not adapter_names:
# no adapter to merge
return
for active_adapter in adapter_names:
base_layer = self.get_base_layer()
if active_adapter in self.lora_A.keys():
if safe_merge:
# Note that safe_merge will be slower than the normal merge
# because of the copy operation.
orig_weights = base_layer.weight.data.clone()
orig_weights += self.get_delta_weight(active_adapter)
if not torch.isfinite(orig_weights).all():
raise ValueError(
f"NaNs detected in the merged weights. The adapter {active_adapter} seems to be broken"
)
base_layer.weight.data = orig_weights
else:
base_layer.weight.data += self.get_delta_weight(active_adapter)
self.merged_adapters.append(active_adapter)
def unmerge(self) -> None:
"""
This method unmerges all merged adapter layers from the base weights.
"""
if not self.merged:
warnings.warn("Already unmerged. Nothing to do.")
return
while len(self.merged_adapters) > 0:
active_adapter = self.merged_adapters.pop()
if active_adapter in self.lora_A.keys():
self.get_base_layer().weight.data -= self.get_delta_weight(active_adapter)
def get_delta_weight(self, adapter) -> torch.Tensor:
return (
transpose(self.lora_B[adapter] @ (self.lora_A[adapter] * self.lora_E[adapter]), self.fan_in_fan_out)
* self.scaling[adapter]
/ (self.ranknum[adapter] + 1e-5)
)
def forward(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
if self.disable_adapters:
if self.merged:
self.unmerge()
result = self.base_layer(x, *args, **kwargs)
elif self.merged:
result = self.base_layer(x, *args, **kwargs)
else:
result = self.base_layer(x, *args, **kwargs)
for active_adapter in self.active_adapters:
if active_adapter not in self.lora_A.keys():
continue
lora_A = self.lora_A[active_adapter]
lora_B = self.lora_B[active_adapter]
lora_E = self.lora_E[active_adapter]
dropout = self.lora_dropout[active_adapter]
scaling = self.scaling[active_adapter]
ranknum = self.ranknum[active_adapter] + 1e-5
x = x.to(lora_A.dtype)
result += (dropout(x) @ (lora_A * lora_E).T @ lora_B.T) * scaling / ranknum
return result
def __repr__(self) -> str:
rep = super().__repr__()
return "adalora." + rep
class RankAllocator:
"""
The RankAllocator for AdaLoraModel. Paper: https://openreview.net/pdf?id=lq62uWRJjiY
Args:
config ([`AdaLoraConfig`]): The configuration of the AdaLora model.
model: the model that we apply AdaLoRA to.
"""
def __init__(self, model, peft_config, adapter_name):
self.peft_config = peft_config
self.adapter_name = adapter_name
self.beta1 = peft_config.beta1
self.beta2 = peft_config.beta2
assert self.beta1 > 0 and self.beta1 < 1
assert self.beta2 > 0 and self.beta2 < 1
self.reset_ipt()
self._set_budget_scheduler(model)
def set_total_step(self, total_step):
self.peft_config.total_step = total_step
def reset_ipt(self):
self.ipt = {}
self.exp_avg_ipt = {}
self.exp_avg_unc = {}
def _set_budget_scheduler(self, model):
self.init_bgt = 0
self.name_set = set()
for n, p in model.named_parameters():
if f"lora_A.{self.adapter_name}" in n:
self.init_bgt += p.size(0)
self.name_set.add(n.replace("lora_A", "%s"))
self.name_set = sorted(self.name_set)
# The total final rank budget
self.target_bgt = self.peft_config.target_r * len(self.name_set)
def budget_schedule(self, step: int):
tinit = self.peft_config.tinit
tfinal = self.peft_config.tfinal
total_step = self.peft_config.total_step
# Initial warmup
if step <= tinit:
budget = self.init_bgt
mask_ind = False
# Final fine-tuning
elif step > total_step - tfinal:
budget = self.target_bgt
mask_ind = True
else:
# Budget decreasing with a cubic scheduler
mul_coeff = 1 - (step - tinit) / (total_step - tfinal - tinit)
budget = int((self.init_bgt - self.target_bgt) * (mul_coeff**3) + self.target_bgt)
mask_ind = True if step % self.peft_config.deltaT == 0 else False
return budget, mask_ind
def update_ipt(self, model):
# Update the sensitivity and uncertainty for every weight
for n, p in model.named_parameters():
if "lora_" in n and self.adapter_name in n:
if n not in self.ipt:
self.ipt[n] = torch.zeros_like(p)
self.exp_avg_ipt[n] = torch.zeros_like(p)
self.exp_avg_unc[n] = torch.zeros_like(p)
with torch.no_grad():
if deepspeed_config() is not None:
import deepspeed
grad = deepspeed.utils.safe_get_full_grad(p)
self.ipt[n] = (p * grad).abs().detach()
else:
self.ipt[n] = (p * p.grad).abs().detach()
# Sensitivity smoothing
self.exp_avg_ipt[n] = self.beta1 * self.exp_avg_ipt[n] + (1 - self.beta1) * self.ipt[n]
# Uncertainty quantification
self.exp_avg_unc[n] = (
self.beta2 * self.exp_avg_unc[n] + (1 - self.beta2) * (self.ipt[n] - self.exp_avg_ipt[n]).abs()
)
def _element_score(self, n):
return self.exp_avg_ipt[n] * self.exp_avg_unc[n]
def _combine_ipt(self, ipt_E, ipt_AB):
ipt_AB = ipt_AB.sum(dim=1, keepdim=False)
sum_ipt = ipt_E.view(-1) + ipt_AB.view(-1)
return sum_ipt
def mask_to_budget(self, model, budget):
value_ipt = {}
vector_ipt = {}
triplet_ipt = {}
# Get the importance score for A, E, B
for n, p in model.named_parameters():
if f"lora_A.{self.adapter_name}" in n:
entry_ipt = self._element_score(n)
comb_ipt = torch.mean(entry_ipt, dim=1, keepdim=True)
name_m = n.replace("lora_A", "%s")
if name_m not in vector_ipt:
vector_ipt[name_m] = [comb_ipt]
else:
vector_ipt[name_m].append(comb_ipt)
if f"lora_B.{self.adapter_name}" in n:
entry_ipt = self._element_score(n)
comb_ipt = torch.mean(entry_ipt, dim=0, keepdim=False).view(-1, 1)
name_m = n.replace("lora_B", "%s")
if name_m not in vector_ipt:
vector_ipt[name_m] = [comb_ipt]
else:
vector_ipt[name_m].append(comb_ipt)
if f"lora_E.{self.adapter_name}" in n:
entry_ipt = self._element_score(n)
name_m = n.replace("lora_E", "%s")
value_ipt[name_m] = entry_ipt
all_score = []
# Calculate the score for each triplet
for name_m in vector_ipt:
ipt_E = value_ipt[name_m]
ipt_AB = torch.cat(vector_ipt[name_m], dim=1)
sum_ipt = self._combine_ipt(ipt_E, ipt_AB)
name_E = name_m % "lora_E"
triplet_ipt[name_E] = sum_ipt.view(-1, 1)
all_score.append(sum_ipt.view(-1))
# Get the threshold by ranking ipt
mask_threshold = torch.kthvalue(
torch.cat(all_score),
k=self.init_bgt - budget,
)[0].item()
rank_pattern = {}
# Mask the unimportant triplets
with torch.no_grad():
for n, p in model.named_parameters():
if f"lora_E.{self.adapter_name}" in n:
p.masked_fill_(triplet_ipt[n] <= mask_threshold, 0.0)
rank_pattern[n] = (~(triplet_ipt[n] <= mask_threshold)).view(-1).tolist()
return rank_pattern
def update_and_allocate(self, model, global_step, force_mask=False):
# # Update the importance score and allocate the budget
if global_step < self.peft_config.total_step - self.peft_config.tfinal:
self.update_ipt(model)
budget, mask_ind = self.budget_schedule(global_step)
# Allocate the budget according to importance scores
if mask_ind or force_mask:
rank_pattern = self.mask_to_budget(model, budget)
else:
rank_pattern = None
return budget, rank_pattern
def mask_using_rank_pattern(self, model, rank_pattern):
# Mask the unimportant triplets
is_adapter_name_truncated = False
if self.adapter_name not in next(iter(rank_pattern.keys())):
is_adapter_name_truncated = True
with torch.no_grad():
for n, p in model.named_parameters():
if f"lora_E.{self.adapter_name}" in n:
key = n if not is_adapter_name_truncated else n.replace(f".{self.adapter_name}", "")
mask = torch.Tensor(rank_pattern[key]).unsqueeze(-1).to(p.device)
p.masked_fill_(~mask.bool(), 0.0)
|