File size: 17,320 Bytes
d711508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Reference code: https://github.com/yxli2123/LoftQ/blob/main/utils.py
# Reference paper: https://arxiv.org/abs/2310.08659

from __future__ import annotations

import logging
import os
from typing import Callable, Optional, Union

import torch
from huggingface_hub import snapshot_download
from huggingface_hub.utils import LocalEntryNotFoundError
from safetensors import SafetensorError, safe_open
from transformers.utils import cached_file
from transformers.utils.hub import get_checkpoint_shard_files

from peft.import_utils import is_bnb_4bit_available, is_bnb_available


class NFQuantizer:
    def __init__(self, num_bits=2, device="cuda", method="normal", block_size=64, *args, **kwargs):
        super().__init__(*args, **kwargs)
        self.num_bits = num_bits
        self.device = device
        self.method = method
        self.block_size = block_size
        if self.method == "normal":
            self.norm_lookup_table = self.create_normal_map(num_bits=self.num_bits)
            self.norm_lookup_table = self.norm_lookup_table.to(device)
        elif self.method == "uniform":
            self.norm_lookup_table = self.create_uniform_map(num_bits=self.num_bits)
            self.norm_lookup_table = self.norm_lookup_table.to(device)
        else:
            raise NotImplementedError("Other quantization methods not supported yet.")

    @staticmethod
    def create_uniform_map(symmetric=False, num_bits=4):
        if symmetric:
            # print("symmetric uniform quantization")
            negative = torch.linspace(-1, 0, 2 ** (num_bits - 1))
            positive = torch.linspace(0, 1, 2 ** (num_bits - 1))
            table = torch.cat([negative, positive[1:]])
        else:
            # print("asymmetric uniform quantization")
            table = torch.linspace(-1, 1, 2**num_bits)
        return table

    @staticmethod
    def create_normal_map(offset=0.9677083, symmetric=False, num_bits=2):
        try:
            from scipy.stats import norm
        except ImportError:
            raise ImportError("The required package 'scipy' is not installed. Please install it to continue.")

        variations = 2**num_bits
        if symmetric:
            v = norm.ppf(torch.linspace(1 - offset, offset, variations + 1)).tolist()
            values = []
            for index in range(len(v) - 1):
                values.append(0.5 * v[index] + 0.5 * v[index + 1])
            v = values
        else:
            # one more positive value, this is an asymmetric type
            v1 = norm.ppf(torch.linspace(offset, 0.5, variations // 2 + 1)[:-1]).tolist()
            v2 = [0]
            v3 = (-norm.ppf(torch.linspace(offset, 0.5, variations // 2)[:-1])).tolist()
            v = v1 + v2 + v3

        values = torch.Tensor(v)
        values = values.sort().values
        values /= values.max()
        return values

    def quantize_tensor(self, weight):
        max_abs = torch.abs(weight).max()
        weight_normed = weight / max_abs

        weight_normed_expanded = weight_normed.unsqueeze(-1)

        # Reshape L to have the same number of dimensions as X_expanded
        L_reshaped = torch.tensor(self.norm_lookup_table).reshape(1, -1)

        # Calculate the absolute difference between X_expanded and L_reshaped
        abs_diff = torch.abs(weight_normed_expanded - L_reshaped)

        # Find the index of the minimum absolute difference for each element
        qweight = torch.argmin(abs_diff, dim=-1)
        return qweight, max_abs

    def dequantize_tensor(self, qweight, max_abs):
        qweight_flatten = qweight.flatten()

        weight_normed = self.norm_lookup_table[qweight_flatten]
        weight = weight_normed * max_abs

        weight = weight.reshape(qweight.shape)

        return weight

    def quantize_block(self, weight):
        if len(weight.shape) != 2:
            raise ValueError(f"Only support 2D matrix, but your input has {len(weight.shape)} dimensions.")
        if weight.shape[0] * weight.shape[1] % self.block_size != 0:
            raise ValueError(
                f"Weight with shape ({weight.shape[0]} x {weight.shape[1]}) "
                f"is not dividable by block size {self.block_size}."
            )

        M, N = weight.shape
        device = weight.device

        # Quantization
        weight_flatten = weight.flatten()  # (M*N, )
        weight_block = weight_flatten.reshape(-1, self.block_size)  # (L, B), L = M * N / B
        if self.method == "normal":
            weight_max = weight_block.abs().max(dim=-1)[0]  # (L, 1)
        elif self.method == "uniform":
            weight_max = weight_block.mean(dim=-1) + 2.5 * weight_block.std(dim=-1)
        else:
            raise NotImplementedError("Method not supported yet.")
        weight_max = weight_max.unsqueeze(-1)
        weight_divabs = weight_block / weight_max  # (L, B)
        weight_divabs = weight_divabs.unsqueeze(-1)  # (L, B, 1)
        L_reshaped = self.norm_lookup_table.reshape(1, -1)  # (1, 2**K)

        abs_diff = torch.abs(weight_divabs - L_reshaped)  # (L, B, 2**K)
        qweight = torch.argmin(abs_diff, dim=-1)  # (L, B)

        # Pack multiple k-bit into uint8
        qweight = qweight.reshape(-1, 8 // self.num_bits)
        qweight_pack = torch.zeros((M * N // 8 * self.num_bits, 1), dtype=torch.uint8, device=device)

        # data format example:
        # [1, 0, 3, 2] or [01, 00, 11, 10]  -> [10110001], LIFO
        for i in range(8 // self.num_bits):
            qweight[:, i] = qweight[:, i] << i * self.num_bits
            qweight_pack[:, 0] |= qweight[:, i]

        return qweight_pack, weight_max, weight.shape

    def dequantize_block(self, qweight, weight_max, weight_shape):
        # unpack weight
        device = qweight.device
        weight = torch.zeros((qweight.shape[0], 8 // self.num_bits), dtype=torch.float32, device=device)
        for i in range(8 // self.num_bits):
            lookup_table_idx = qweight.to(torch.long) % 2**self.num_bits  # get the most right 2 bits
            lookup_table_idx = lookup_table_idx.to(torch.long)
            weight[:, i] = self.norm_lookup_table[lookup_table_idx].squeeze()
            qweight = qweight >> self.num_bits  # right shift 2 bits of the original data

        weight_block = weight.reshape(-1, self.block_size)
        weight = weight_block * weight_max
        weight = weight.reshape(weight_shape)

        return weight


def _low_rank_decomposition(weight, reduced_rank=32):
    """
    :param weight: The matrix to decompose, of shape (H, W) :param reduced_rank: the final rank :return:
    """
    matrix_dimension = len(weight.size())
    if matrix_dimension != 2:
        raise ValueError(f"Only support 2D matrix, but your input has {matrix_dimension} dimensions.")

    # Use SVD to decompose a matrix, default full_matrices is False to save parameters
    U, S, Vh = torch.linalg.svd(weight, full_matrices=False)

    L = U @ (torch.sqrt(torch.diag(S)[:, 0:reduced_rank]))
    R = torch.sqrt(torch.diag(S)[0:reduced_rank, :]) @ Vh

    return {"L": L, "R": R, "U": U, "S": S, "Vh": Vh, "reduced_rank": reduced_rank}


@torch.no_grad()
def loftq_init(weight: Union[torch.Tensor, torch.nn.Parameter], num_bits: int, reduced_rank: int, num_iter=1):
    if is_bnb_available():
        import bitsandbytes as bnb
    else:
        raise ValueError("bitsandbytes is not available, please install it to use LoftQ.")

    if num_bits not in [2, 4, 8]:
        raise ValueError("Only support 2, 4, 8 bits quantization")
    if num_iter <= 0:
        raise ValueError("Number of iterations must be greater than 0")

    out_feature, in_feature = weight.size()
    device = weight.device
    dtype = weight.dtype

    logging.info(
        f"Weight: ({out_feature}, {in_feature}) | Rank: {reduced_rank} "
        f"| Num Iter: {num_iter} | Num Bits: {num_bits}"
    )
    if not is_bnb_4bit_available() or num_bits in [2, 8]:
        quantizer = NFQuantizer(num_bits=num_bits, device=device, method="normal", block_size=64)
        compute_device = device
    else:
        compute_device = "cuda"

    weight = weight.to(device=compute_device, dtype=torch.float32)
    res = weight.clone()
    for i in range(num_iter):
        torch.cuda.empty_cache()
        # Quantization
        if num_bits == 4 and is_bnb_4bit_available():
            qweight = bnb.nn.Params4bit(
                res.to("cpu"), requires_grad=False, compress_statistics=False, quant_type="nf4"
            ).to(compute_device)
            dequantized_weight = bnb.functional.dequantize_4bit(qweight.data, qweight.quant_state)
        else:
            quantized_weight, max_abs, shape = quantizer.quantize_block(res)
            dequantized_weight = quantizer.dequantize_block(quantized_weight, max_abs, shape)

        res = weight - dequantized_weight

        # Decompose the residual by SVD
        output = _low_rank_decomposition(res, reduced_rank=reduced_rank)
        L, R, reduced_rank = output["L"], output["R"], output["reduced_rank"]
        res = weight - torch.mm(L, R)

    lora_A, lora_B = R, L

    return dequantized_weight.to(device=device, dtype=dtype), lora_A, lora_B


@torch.no_grad()
def _loftq_init_new(qweight, weight, num_bits: int, reduced_rank: int):
    import bitsandbytes as bnb

    if num_bits != 4:
        raise ValueError("Only 4 bit quantization supported at the moment.")
    if not is_bnb_4bit_available():
        raise ValueError("bitsandbytes 4bit quantization is not available.")

    compute_device = "cuda"
    dequantized_weight = bnb.functional.dequantize_4bit(qweight.data, qweight.quant_state)

    weight = weight.to(device=compute_device, dtype=torch.float32)
    residual = weight - dequantized_weight
    torch.cuda.empty_cache()
    # Decompose the residualidual by SVD
    output = _low_rank_decomposition(residual, reduced_rank=reduced_rank)
    L, R, reduced_rank = output["L"], output["R"], output["reduced_rank"]
    return R, L


class _SafetensorLoader:
    """
    Simple utility class that loads tensors with safetensors from a single file or sharded files.

    Takes care of file name normalization etc.

    """

    def __init__(self, peft_model, model_path):
        if model_path is None:
            try:
                model_path = snapshot_download(peft_model.base_model.config._name_or_path, local_files_only=True)
            except AttributeError as exc:
                raise ValueError(
                    "The provided model does not appear to be a transformers model. In this case, you must pass the "
                    "model_path to the safetensors file."
                ) from exc
            except LocalEntryNotFoundError as exc:
                raise ValueError(
                    "The model.safetensors file must be present on disk, but it could not be found."
                ) from exc

        suffix = "model.safetensors"
        if not model_path.endswith(suffix):
            model_path = os.path.join(model_path, suffix)

        self.model_path = model_path
        self.base_model_prefix = getattr(peft_model.get_base_model(), "base_model_prefix", None)
        self.prefix = "base_model.model."
        self.is_sharded = False
        self.weight_map = None

        if not os.path.exists(model_path):
            # check if the file is sharded
            par_dir = model_path.rpartition(os.path.sep)[0]
            try:
                resolved_archive_file, sharded_metadata = get_checkpoint_shard_files(
                    par_dir, cached_file(par_dir, "model.safetensors.index.json")
                )
            except OSError as exc:
                raise FileNotFoundError(
                    f"Could not find file for {model_path}, ensure that there is a (sharded) safetensors file of the model."
                ) from exc

            self.is_sharded = True
            # maps from 'model-X-of-Y.safetensors' to full file path
            file_map = {k.rpartition(os.path.sep)[-1]: k for k in resolved_archive_file}
            self.weight_map = {k: file_map[v] for k, v in sharded_metadata["weight_map"].items()}

    def get_tensor(self, name):
        if not self.is_sharded:
            file_path = self.model_path
        else:
            file_path = self.weight_map[name]

        with safe_open(file_path, framework="pt", device="cpu") as f:
            try:
                tensor = f.get_tensor(name)
            except SafetensorError as exc:
                # no matching key found, we probably need to remove the base model prefix
                if self.base_model_prefix:
                    # remove 1 extra character for "."
                    name = name[len(self.base_model_prefix) + 1 :]
                    tensor = f.get_tensor(name)
                else:
                    raise exc
        return tensor


@torch.no_grad()
def replace_lora_weights_loftq(
    peft_model,
    model_path: Optional[str] = None,
    adapter_name: str = "default",
    callback: Optional[Callable[[torch.nn.Module, str], bool]] = None,
):
    """
    Replace the LoRA weights of a model quantized with bitsandbytes, using the LoftQ technique.

    The replacement is done on the fly by loading in the non-quantized weights from a locally stored safetensors model
    file and initializing the LoRA weights such that the quantization error between the original and quantized weights
    is minimized.

    As lazy loading is not possible with pickle, normal PyTorch checkpoint files cannot be supported.

    Depending on the model size, calling this function may take some time to finish.

    Args:
        peft_model (`PeftModel`):
            The model to replace the weights of. Must be a quantized PEFT model with LoRA layers.
        model_path (`Optional[str]`):
            The path to the model safetensors file. If the model is a Hugging Face model, this will be inferred from
            the model's config. Otherwise, it must be provided.
        adapter_name (`str`):
            The name of the adapter to replace the weights of. The default adapter name is "default".
        callback (`Optional[Callable[[PeftModel, str], bool]]`):
            A callback function that will be called after each module is replaced. The callback function should take
            the model and the name of the current module as input and return a boolean indicating whether the
            replacement should be kept. If the callback returns False, the replacement will be rolled back. This can be
            very useful to confirm that the LoftQ initialization actually decreases the quantization error of the
            model. As an example, this callback could generate logits for given input and compare it with the logits
            from the original, non-quanitzed model with the same input, and only return `True` if there is an
            improvement. As this is a greedy optimization, it's possible that calling this function multiple times
            yields incremental improvements.
    """
    if not is_bnb_4bit_available():
        raise ValueError("bitsandbytes must be installed and the model must be quantized in 4bits.")

    from peft.tuners.lora import Linear4bit

    # model_path = _check_model_path_loftq(model_path, peft_model)
    prefix = "base_model.model."
    any_match = False
    safetensor_loader = _SafetensorLoader(peft_model, model_path)

    # if too slow, consider adding tqdm as an option
    for name, module in peft_model.named_modules():
        if not isinstance(module, Linear4bit):
            continue

        if not name.startswith(prefix):
            raise TypeError("The passed model does not appear to be a valid PeftModel")

        any_match = True
        name = name[len(prefix) :]
        tensor = safetensor_loader.get_tensor(name + ".weight")

        reduced_rank = module.r[adapter_name]
        lora_A, lora_B = _loftq_init_new(module.weight, tensor, num_bits=4, reduced_rank=reduced_rank)
        if not callback:
            module.lora_A[adapter_name].weight.data = lora_A
            module.lora_B[adapter_name].weight.data = lora_B
            continue

        lora_A_before = module.lora_A[adapter_name].weight.data
        lora_B_before = module.lora_B[adapter_name].weight.data

        module.lora_A[adapter_name].weight.data = lora_A
        module.lora_B[adapter_name].weight.data = lora_B
        should_replace = callback(peft_model, name)
        if not should_replace:
            # roll back
            module.lora_A[adapter_name].weight.data = lora_A_before
            module.lora_B[adapter_name].weight.data = lora_B_before

        del lora_A_before, lora_B_before

    if not any_match:
        raise ValueError("No bnb LoRA module found on the model")