File size: 10,924 Bytes
d711508
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
import json
import os
from dataclasses import asdict, dataclass, field
from typing import Dict, Optional, Union

from huggingface_hub import hf_hub_download
from transformers.utils import PushToHubMixin

from .utils import CONFIG_NAME, PeftType, TaskType


@dataclass
class PeftConfigMixin(PushToHubMixin):
    r"""
    This is the base configuration class for PEFT adapter models. It contains all the methods that are common to all
    PEFT adapter models. This class inherits from [`~transformers.utils.PushToHubMixin`] which contains the methods to
    push your model to the Hub. The method `save_pretrained` will save the configuration of your adapter model in a
    directory. The method `from_pretrained` will load the configuration of your adapter model from a directory.

    Args:
        peft_type (Union[[`~peft.utils.config.PeftType`], `str`]): The type of Peft method to use.
    """

    peft_type: Optional[PeftType] = field(default=None, metadata={"help": "The type of PEFT model."})
    auto_mapping: Optional[dict] = field(
        default=None, metadata={"help": "An auto mapping dict to help retrieve the base model class if needed."}
    )

    def to_dict(self) -> Dict:
        r"""
        Returns the configuration for your adapter model as a dictionary.
        """
        return asdict(self)

    def save_pretrained(self, save_directory: str, **kwargs) -> None:
        r"""
        This method saves the configuration of your adapter model in a directory.

        Args:
            save_directory (`str`):
                The directory where the configuration will be saved.
            kwargs (additional keyword arguments, *optional*):
                Additional keyword arguments passed along to the [`~transformers.utils.PushToHubMixin.push_to_hub`]
                method.
        """
        if os.path.isfile(save_directory):
            raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file")

        os.makedirs(save_directory, exist_ok=True)
        auto_mapping_dict = kwargs.pop("auto_mapping_dict", None)

        output_dict = asdict(self)
        # converting set type to list
        for key, value in output_dict.items():
            if isinstance(value, set):
                output_dict[key] = list(value)

        output_path = os.path.join(save_directory, CONFIG_NAME)

        # Add auto mapping details for custom models.
        if auto_mapping_dict is not None:
            output_dict["auto_mapping"] = auto_mapping_dict

        # save it
        with open(output_path, "w") as writer:
            writer.write(json.dumps(output_dict, indent=2, sort_keys=True))

    @classmethod
    def from_peft_type(cls, **kwargs):
        r"""
        This method loads the configuration of your adapter model from a set of kwargs.

        The appropriate configuration type is determined by the `peft_type` argument. If `peft_type` is not provided,
        the calling class type is instantiated.

        Args:
            kwargs (configuration keyword arguments):
                Keyword arguments passed along to the configuration initialization.
        """
        # Avoid circular dependency .. TODO: fix this with a larger refactor
        from peft.mapping import PEFT_TYPE_TO_CONFIG_MAPPING

        # TODO: this hack is needed to fix the following issue (on commit 702f937):
        # if someone saves a default config and loads it back with `PeftConfig` class it yields to
        # not loading the correct config class.

        # from peft import AdaLoraConfig, PeftConfig
        # peft_config = AdaLoraConfig()
        # print(peft_config)
        # >>> AdaLoraConfig(peft_type=<PeftType.ADALORA: 'ADALORA'>, auto_mapping=None, base_model_name_or_path=None,
        # revision=None, task_type=None, inference_mode=False, r=8, target_modules=None, lora_alpha=8, lora_dropout=0.0, ...
        #
        # peft_config.save_pretrained("./test_config")
        # peft_config = PeftConfig.from_pretrained("./test_config")
        # print(peft_config)
        # >>> PeftConfig(peft_type='ADALORA', auto_mapping=None, base_model_name_or_path=None, revision=None, task_type=None, inference_mode=False)

        if "peft_type" in kwargs:
            peft_type = kwargs["peft_type"]
            config_cls = PEFT_TYPE_TO_CONFIG_MAPPING[peft_type]
        else:
            config_cls = cls

        return config_cls(**kwargs)

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: str, subfolder: Optional[str] = None, **kwargs):
        r"""
        This method loads the configuration of your adapter model from a directory.

        Args:
            pretrained_model_name_or_path (`str`):
                The directory or the Hub repository id where the configuration is saved.
            kwargs (additional keyword arguments, *optional*):
                Additional keyword arguments passed along to the child class initialization.
        """
        path = (
            os.path.join(pretrained_model_name_or_path, subfolder)
            if subfolder is not None
            else pretrained_model_name_or_path
        )

        hf_hub_download_kwargs, class_kwargs, _ = cls._split_kwargs(kwargs)

        if os.path.isfile(os.path.join(path, CONFIG_NAME)):
            config_file = os.path.join(path, CONFIG_NAME)
        else:
            try:
                config_file = hf_hub_download(
                    pretrained_model_name_or_path, CONFIG_NAME, subfolder=subfolder, **hf_hub_download_kwargs
                )
            except Exception as exc:
                raise ValueError(f"Can't find '{CONFIG_NAME}' at '{pretrained_model_name_or_path}'") from exc

        loaded_attributes = cls.from_json_file(config_file)
        kwargs = {**class_kwargs, **loaded_attributes}
        return cls.from_peft_type(**kwargs)

    @classmethod
    def from_json_file(cls, path_json_file: str, **kwargs):
        r"""
        Loads a configuration file from a json file.

        Args:
            path_json_file (`str`):
                The path to the json file.
        """
        with open(path_json_file) as file:
            json_object = json.load(file)

        return json_object

    @classmethod
    def _split_kwargs(cls, kwargs):
        hf_hub_download_kwargs = {}
        class_kwargs = {}
        other_kwargs = {}

        for key, value in kwargs.items():
            if key in inspect.signature(hf_hub_download).parameters:
                hf_hub_download_kwargs[key] = value
            elif key in list(cls.__annotations__):
                class_kwargs[key] = value
            else:
                other_kwargs[key] = value

        return hf_hub_download_kwargs, class_kwargs, other_kwargs

    @classmethod
    def _get_peft_type(
        cls,
        model_id: str,
        **hf_hub_download_kwargs,
    ):
        subfolder = hf_hub_download_kwargs.get("subfolder", None)

        path = os.path.join(model_id, subfolder) if subfolder is not None else model_id

        if os.path.isfile(os.path.join(path, CONFIG_NAME)):
            config_file = os.path.join(path, CONFIG_NAME)
        else:
            try:
                config_file = hf_hub_download(
                    model_id,
                    CONFIG_NAME,
                    **hf_hub_download_kwargs,
                )
            except Exception:
                raise ValueError(f"Can't find '{CONFIG_NAME}' at '{model_id}'")

        loaded_attributes = cls.from_json_file(config_file)
        return loaded_attributes["peft_type"]

    @property
    def is_prompt_learning(self) -> bool:
        r"""
        Utility method to check if the configuration is for prompt learning.
        """
        return False

    @property
    def is_adaption_prompt(self) -> bool:
        """Return True if this is an adaption prompt config."""
        return False


@dataclass
class PeftConfig(PeftConfigMixin):
    """
    This is the base configuration class to store the configuration of a [`PeftModel`].

    Args:
        peft_type (Union[[`~peft.utils.config.PeftType`], `str`]): The type of Peft method to use.
        task_type (Union[[`~peft.utils.config.TaskType`], `str`]): The type of task to perform.
        inference_mode (`bool`, defaults to `False`): Whether to use the Peft model in inference mode.
    """

    base_model_name_or_path: Optional[str] = field(
        default=None, metadata={"help": "The name of the base model to use."}
    )
    revision: Optional[str] = field(default=None, metadata={"help": "The specific model version to use."})
    peft_type: Optional[Union[str, PeftType]] = field(default=None, metadata={"help": "Peft type"})
    task_type: Optional[Union[str, TaskType]] = field(default=None, metadata={"help": "Task type"})
    inference_mode: bool = field(default=False, metadata={"help": "Whether to use inference mode"})


@dataclass
class PromptLearningConfig(PeftConfig):
    """
    This is the base configuration class to store the configuration of [`PrefixTuning`], [`PromptEncoder`], or
    [`PromptTuning`].

    Args:
        num_virtual_tokens (`int`): The number of virtual tokens to use.
        token_dim (`int`): The hidden embedding dimension of the base transformer model.
        num_transformer_submodules (`int`): The number of transformer submodules in the base transformer model.
        num_attention_heads (`int`): The number of attention heads in the base transformer model.
        num_layers (`int`): The number of layers in the base transformer model.
    """

    num_virtual_tokens: int = field(default=None, metadata={"help": "Number of virtual tokens"})
    token_dim: int = field(
        default=None, metadata={"help": "The hidden embedding dimension of the base transformer model"}
    )
    num_transformer_submodules: Optional[int] = field(
        default=None, metadata={"help": "Number of transformer submodules"}
    )
    num_attention_heads: Optional[int] = field(default=None, metadata={"help": "Number of attention heads"})
    num_layers: Optional[int] = field(default=None, metadata={"help": "Number of transformer layers"})

    @property
    def is_prompt_learning(self) -> bool:
        r"""
        Utility method to check if the configuration is for prompt learning.
        """
        return True