Spaces:
Running
on
Zero
Running
on
Zero
import math | |
from dataclasses import dataclass | |
from typing import Callable, Optional | |
import torch | |
import torch.nn.functional as F | |
from diffusers.models.attention import Attention, FeedForward | |
from diffusers.utils import BaseOutput | |
from diffusers.utils.torch_utils import maybe_allow_in_graph | |
from einops import rearrange, repeat | |
from torch import Tensor, nn | |
def zero_module(module): | |
# Zero out the parameters of a module and return it. | |
for p in module.parameters(): | |
p.detach().zero_() | |
return module | |
class TemporalTransformer3DModelOutput(BaseOutput): | |
sample: torch.FloatTensor | |
def get_motion_module(in_channels, motion_module_type: str, motion_module_kwargs: dict): | |
if motion_module_type == "Vanilla": | |
return VanillaTemporalModule( | |
in_channels=in_channels, | |
**motion_module_kwargs, | |
) | |
else: | |
raise ValueError | |
class VanillaTemporalModule(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
num_attention_heads=8, | |
num_transformer_block=2, | |
attention_block_types=("Temporal_Self", "Temporal_Self"), | |
cross_frame_attention_mode=None, | |
temporal_position_encoding=False, | |
temporal_position_encoding_max_len=24, | |
temporal_attention_dim_div=1, | |
zero_initialize=True, | |
): | |
super().__init__() | |
self.temporal_transformer = TemporalTransformer3DModel( | |
in_channels=in_channels, | |
num_attention_heads=num_attention_heads, | |
attention_head_dim=in_channels | |
// num_attention_heads | |
// temporal_attention_dim_div, | |
num_layers=num_transformer_block, | |
attention_block_types=attention_block_types, | |
cross_frame_attention_mode=cross_frame_attention_mode, | |
temporal_position_encoding=temporal_position_encoding, | |
temporal_position_encoding_max_len=temporal_position_encoding_max_len, | |
) | |
if zero_initialize: | |
self.temporal_transformer.proj_out = zero_module( | |
self.temporal_transformer.proj_out | |
) | |
self.skip_temporal_layers = False # Whether to skip temporal layer | |
def forward( | |
self, | |
input_tensor, | |
temb, | |
encoder_hidden_states, | |
attention_mask=None, | |
anchor_frame_idx=None, | |
): | |
if self.skip_temporal_layers is True: | |
return input_tensor | |
hidden_states = input_tensor | |
hidden_states = self.temporal_transformer( | |
hidden_states, encoder_hidden_states, attention_mask | |
) | |
output = hidden_states | |
return output | |
class TemporalTransformer3DModel(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
num_attention_heads, | |
attention_head_dim, | |
num_layers, | |
attention_block_types=( | |
"Temporal_Self", | |
"Temporal_Self", | |
), | |
dropout=0.0, | |
norm_num_groups=32, | |
cross_attention_dim=768, | |
activation_fn="geglu", | |
attention_bias=False, | |
upcast_attention=False, | |
cross_frame_attention_mode=None, | |
temporal_position_encoding=False, | |
temporal_position_encoding_max_len=24, | |
): | |
super().__init__() | |
inner_dim = num_attention_heads * attention_head_dim | |
self.norm = torch.nn.GroupNorm( | |
num_groups=norm_num_groups, num_channels=in_channels, eps=1e-6, affine=True | |
) | |
self.proj_in = nn.Linear(in_channels, inner_dim) | |
self.transformer_blocks = nn.ModuleList( | |
[ | |
TemporalTransformerBlock( | |
dim=inner_dim, | |
num_attention_heads=num_attention_heads, | |
attention_head_dim=attention_head_dim, | |
attention_block_types=attention_block_types, | |
dropout=dropout, | |
norm_num_groups=norm_num_groups, | |
cross_attention_dim=cross_attention_dim, | |
activation_fn=activation_fn, | |
attention_bias=attention_bias, | |
upcast_attention=upcast_attention, | |
cross_frame_attention_mode=cross_frame_attention_mode, | |
temporal_position_encoding=temporal_position_encoding, | |
temporal_position_encoding_max_len=temporal_position_encoding_max_len, | |
) | |
for d in range(num_layers) | |
] | |
) | |
self.proj_out = nn.Linear(inner_dim, in_channels) | |
def forward( | |
self, | |
hidden_states: Tensor, | |
encoder_hidden_states: Optional[Tensor] = None, | |
attention_mask: Optional[Tensor] = None, | |
): | |
assert ( | |
hidden_states.dim() == 5 | |
), f"Expected hidden_states to have ndim=5, but got ndim={hidden_states.dim()}." | |
video_length = hidden_states.shape[2] | |
hidden_states = rearrange(hidden_states, "b c f h w -> (b f) c h w") | |
batch, channel, height, weight = hidden_states.shape | |
residual = hidden_states | |
hidden_states = self.norm(hidden_states) | |
inner_dim = hidden_states.shape[1] | |
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape( | |
batch, height * weight, inner_dim | |
) | |
hidden_states = self.proj_in(hidden_states) | |
# Transformer Blocks | |
for block in self.transformer_blocks: | |
hidden_states = block( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
video_length=video_length, | |
) | |
# output | |
hidden_states = self.proj_out(hidden_states) | |
hidden_states = ( | |
hidden_states.reshape(batch, height, weight, inner_dim) | |
.permute(0, 3, 1, 2) | |
.contiguous() | |
) | |
output = hidden_states + residual | |
output = rearrange(output, "(b f) c h w -> b c f h w", f=video_length) | |
return output | |
class TemporalTransformerBlock(nn.Module): | |
def __init__( | |
self, | |
dim: int, | |
num_attention_heads: int, | |
attention_head_dim: int, | |
attention_block_types=( | |
"Temporal_Self", | |
"Temporal_Self", | |
), | |
dropout=0.0, | |
norm_num_groups: int = 32, | |
cross_attention_dim: int = 768, | |
activation_fn: str = "geglu", | |
attention_bias: bool = False, | |
upcast_attention: bool = False, | |
cross_frame_attention_mode=None, | |
temporal_position_encoding: bool = False, | |
temporal_position_encoding_max_len: int = 24, | |
): | |
super().__init__() | |
attention_blocks = [] | |
norms = [] | |
for block_name in attention_block_types: | |
attention_blocks.append( | |
VersatileAttention( | |
attention_mode=block_name.split("_")[0], | |
cross_attention_dim=( | |
cross_attention_dim if block_name.endswith("_Cross") else None | |
), | |
query_dim=dim, | |
heads=num_attention_heads, | |
dim_head=attention_head_dim, | |
dropout=dropout, | |
bias=attention_bias, | |
upcast_attention=upcast_attention, | |
cross_frame_attention_mode=cross_frame_attention_mode, | |
temporal_position_encoding=temporal_position_encoding, | |
temporal_position_encoding_max_len=temporal_position_encoding_max_len, | |
) | |
) | |
norms.append(nn.LayerNorm(dim)) | |
self.attention_blocks = nn.ModuleList(attention_blocks) | |
self.norms = nn.ModuleList(norms) | |
self.ff = FeedForward(dim, dropout=dropout, activation_fn=activation_fn) | |
self.ff_norm = nn.LayerNorm(dim) | |
def forward( | |
self, | |
hidden_states, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
video_length=None, | |
): | |
for attention_block, norm in zip(self.attention_blocks, self.norms): | |
norm_hidden_states = norm(hidden_states) | |
hidden_states = ( | |
attention_block( | |
norm_hidden_states, | |
encoder_hidden_states=( | |
encoder_hidden_states | |
if attention_block.is_cross_attention | |
else None | |
), | |
video_length=video_length, | |
) | |
+ hidden_states | |
) | |
hidden_states = self.ff(self.ff_norm(hidden_states)) + hidden_states | |
output = hidden_states | |
return output | |
class PositionalEncoding(nn.Module): | |
def __init__(self, d_model, dropout: float = 0.0, max_len: int = 24): | |
super().__init__() | |
self.dropout: nn.Module = nn.Dropout(p=dropout) | |
position = torch.arange(max_len).unsqueeze(1) | |
div_term = torch.exp( | |
torch.arange(0, d_model, 2) * (-math.log(10000.0) / d_model) | |
) | |
pe: Tensor = torch.zeros(1, max_len, d_model) | |
pe[0, :, 0::2] = torch.sin(position * div_term) | |
pe[0, :, 1::2] = torch.cos(position * div_term) | |
self.register_buffer("pe", pe) | |
def forward(self, x: Tensor): | |
x = x + self.pe[:, : x.size(1)] | |
return self.dropout(x) | |
class VersatileAttention(Attention): | |
def __init__( | |
self, | |
attention_mode: str = None, | |
cross_frame_attention_mode: Optional[str] = None, | |
temporal_position_encoding: bool = False, | |
temporal_position_encoding_max_len: int = 24, | |
*args, | |
**kwargs, | |
): | |
super().__init__(*args, **kwargs) | |
if attention_mode.lower() != "temporal": | |
raise ValueError(f"Attention mode {attention_mode} is not supported.") | |
self.attention_mode = attention_mode | |
self.is_cross_attention = kwargs["cross_attention_dim"] is not None | |
self.pos_encoder = ( | |
PositionalEncoding( | |
kwargs["query_dim"], | |
dropout=0.0, | |
max_len=temporal_position_encoding_max_len, | |
) | |
if (temporal_position_encoding and attention_mode == "Temporal") | |
else None | |
) | |
def extra_repr(self): | |
return f"(Module Info) Attention_Mode: {self.attention_mode}, Is_Cross_Attention: {self.is_cross_attention}" | |
def forward( | |
self, | |
hidden_states: Tensor, | |
encoder_hidden_states=None, | |
attention_mask=None, | |
video_length=None, | |
): | |
if self.attention_mode == "Temporal": | |
d = hidden_states.shape[1] | |
hidden_states = rearrange( | |
hidden_states, "(b f) d c -> (b d) f c", f=video_length | |
) | |
if self.pos_encoder is not None: | |
hidden_states = self.pos_encoder(hidden_states) | |
encoder_hidden_states = ( | |
repeat(encoder_hidden_states, "b n c -> (b d) n c", d=d) | |
if encoder_hidden_states is not None | |
else encoder_hidden_states | |
) | |
else: | |
raise NotImplementedError | |
# attention processor makes this easy so that's nice | |
hidden_states = self.processor( | |
self, hidden_states, encoder_hidden_states, attention_mask | |
) | |
if self.attention_mode == "Temporal": | |
hidden_states = rearrange(hidden_states, "(b d) f c -> (b f) d c", d=d) | |
return hidden_states | |
def set_use_memory_efficient_attention_xformers( | |
self, | |
use_memory_efficient_attention_xformers: bool, | |
attention_op: Optional[Callable] = None, | |
): | |
return None | |