Spaces:
Running
on
Zero
Running
on
Zero
import os | |
import imageio | |
import importlib | |
from omegaconf import OmegaConf | |
from typing import Union | |
from safetensors import safe_open | |
from tqdm import tqdm | |
import numpy as np | |
import torch | |
import torchvision | |
import torch.distributed as dist | |
from scipy.interpolate import PchipInterpolator | |
from einops import rearrange | |
from utils.convert_from_ckpt import convert_ldm_unet_checkpoint, convert_ldm_clip_checkpoint, convert_ldm_vae_checkpoint | |
from utils.convert_lora_safetensor_to_diffusers import convert_lora, load_diffusers_lora | |
from modules.flow_controlnet import FlowControlNetModel | |
from modules.image_controlnet import ImageControlNetModel | |
def zero_rank_print(s): | |
if (not dist.is_initialized()) and (dist.is_initialized() and dist.get_rank() == 0): print("### " + s) | |
def save_videos_grid(videos: torch.Tensor, path: str, rescale=False, n_rows=2, fps=8): | |
videos = rearrange(videos, "b c t h w -> t b c h w") | |
outputs = [] | |
for x in videos: | |
x = torchvision.utils.make_grid(x, nrow=n_rows) | |
x = x.transpose(0, 1).transpose(1, 2).squeeze(-1) | |
if rescale: | |
x = (x + 1.0) / 2.0 # -1,1 -> 0,1 | |
x = (x * 255).numpy().astype(np.uint8) | |
outputs.append(x) | |
os.makedirs(os.path.dirname(path), exist_ok=True) | |
imageio.mimsave(path, outputs, fps=fps, loop=0) | |
# DDIM Inversion | |
def init_prompt(prompt, pipeline): | |
uncond_input = pipeline.tokenizer( | |
[""], padding="max_length", max_length=pipeline.tokenizer.model_max_length, | |
return_tensors="pt" | |
) | |
uncond_embeddings = pipeline.text_encoder(uncond_input.input_ids.to(pipeline.device))[0] | |
text_input = pipeline.tokenizer( | |
[prompt], | |
padding="max_length", | |
max_length=pipeline.tokenizer.model_max_length, | |
truncation=True, | |
return_tensors="pt", | |
) | |
text_embeddings = pipeline.text_encoder(text_input.input_ids.to(pipeline.device))[0] | |
context = torch.cat([uncond_embeddings, text_embeddings]) | |
return context | |
def next_step(model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, | |
sample: Union[torch.FloatTensor, np.ndarray], ddim_scheduler): | |
timestep, next_timestep = min( | |
timestep - ddim_scheduler.config.num_train_timesteps // ddim_scheduler.num_inference_steps, 999), timestep | |
alpha_prod_t = ddim_scheduler.alphas_cumprod[timestep] if timestep >= 0 else ddim_scheduler.final_alpha_cumprod | |
alpha_prod_t_next = ddim_scheduler.alphas_cumprod[next_timestep] | |
beta_prod_t = 1 - alpha_prod_t | |
next_original_sample = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5 | |
next_sample_direction = (1 - alpha_prod_t_next) ** 0.5 * model_output | |
next_sample = alpha_prod_t_next ** 0.5 * next_original_sample + next_sample_direction | |
return next_sample | |
def get_noise_pred_single(latents, t, context, unet): | |
noise_pred = unet(latents, t, encoder_hidden_states=context)["sample"] | |
return noise_pred | |
def ddim_loop(pipeline, ddim_scheduler, latent, num_inv_steps, prompt): | |
context = init_prompt(prompt, pipeline) | |
uncond_embeddings, cond_embeddings = context.chunk(2) | |
all_latent = [latent] | |
latent = latent.clone().detach() | |
for i in tqdm(range(num_inv_steps)): | |
t = ddim_scheduler.timesteps[len(ddim_scheduler.timesteps) - i - 1] | |
noise_pred = get_noise_pred_single(latent, t, cond_embeddings, pipeline.unet) | |
latent = next_step(noise_pred, t, latent, ddim_scheduler) | |
all_latent.append(latent) | |
return all_latent | |
def ddim_inversion(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt=""): | |
ddim_latents = ddim_loop(pipeline, ddim_scheduler, video_latent, num_inv_steps, prompt) | |
return ddim_latents | |
def load_weights( | |
animation_pipeline, | |
# motion module | |
motion_module_path = "", | |
motion_module_lora_configs = [], | |
# domain adapter | |
adapter_lora_path = "", | |
adapter_lora_scale = 1.0, | |
# image layers | |
dreambooth_model_path = "", | |
lora_model_path = "", | |
lora_alpha = 0.8, | |
): | |
# motion module | |
unet_state_dict = {} | |
if motion_module_path != "": | |
print(f"load motion module from {motion_module_path}") | |
motion_module_state_dict = torch.load(motion_module_path, map_location="cpu") | |
motion_module_state_dict = motion_module_state_dict["state_dict"] if "state_dict" in motion_module_state_dict else motion_module_state_dict | |
unet_state_dict.update({name: param for name, param in motion_module_state_dict.items() if "motion_modules." in name}) | |
unet_state_dict.pop("animatediff_config", "") | |
missing, unexpected = animation_pipeline.unet.load_state_dict(unet_state_dict, strict=False) | |
assert len(unexpected) == 0 | |
del unet_state_dict | |
# base model | |
if dreambooth_model_path != "": | |
print(f"load dreambooth model from {dreambooth_model_path}") | |
if dreambooth_model_path.endswith(".safetensors"): | |
dreambooth_state_dict = {} | |
with safe_open(dreambooth_model_path, framework="pt", device="cpu") as f: | |
for key in f.keys(): | |
dreambooth_state_dict[key] = f.get_tensor(key) | |
elif dreambooth_model_path.endswith(".ckpt"): | |
dreambooth_state_dict = torch.load(dreambooth_model_path, map_location="cpu") | |
# 1. vae | |
converted_vae_checkpoint = convert_ldm_vae_checkpoint(dreambooth_state_dict, animation_pipeline.vae.config) | |
for key in list(converted_vae_checkpoint.keys()): | |
if 'mid_block' in key: | |
if 'key' in key: | |
new_key = key.replace('key', 'to_k') | |
elif 'query' in key: | |
new_key = key.replace('query', 'to_q') | |
elif 'value' in key: | |
new_key = key.replace('value', 'to_v') | |
elif 'proj_attn' in key: | |
new_key = key.replace('proj_attn', 'to_out.0') | |
else: new_key=False | |
if new_key: | |
converted_vae_checkpoint[new_key] = converted_vae_checkpoint[key] | |
del converted_vae_checkpoint[key] | |
m, u = animation_pipeline.vae.load_state_dict(converted_vae_checkpoint, strict=False) | |
print(f"dreambooth vae: {u}") | |
# 2. unet | |
converted_unet_checkpoint = convert_ldm_unet_checkpoint(dreambooth_state_dict, animation_pipeline.unet.config) | |
m,u = animation_pipeline.unet.load_state_dict(converted_unet_checkpoint, strict=False) | |
# 3. text_model | |
animation_pipeline.text_encoder = convert_ldm_clip_checkpoint(dreambooth_state_dict) | |
del dreambooth_state_dict | |
# lora layers | |
if lora_model_path != "": | |
print(f"load lora model from {lora_model_path}") | |
assert lora_model_path.endswith(".safetensors") | |
lora_state_dict = {} | |
with safe_open(lora_model_path, framework="pt", device="cpu") as f: | |
for key in f.keys(): | |
lora_state_dict[key] = f.get_tensor(key) | |
animation_pipeline = convert_lora(animation_pipeline, lora_state_dict, alpha=lora_alpha) | |
del lora_state_dict | |
# domain adapter lora | |
if adapter_lora_path != "": | |
print(f"load domain lora from {adapter_lora_path}") | |
domain_lora_state_dict = torch.load(adapter_lora_path, map_location="cpu") | |
domain_lora_state_dict = domain_lora_state_dict["state_dict"] if "state_dict" in domain_lora_state_dict else domain_lora_state_dict | |
domain_lora_state_dict.pop("animatediff_config", "") | |
animation_pipeline = load_diffusers_lora(animation_pipeline, domain_lora_state_dict, alpha=adapter_lora_scale) | |
# motion module lora | |
for motion_module_lora_config in motion_module_lora_configs: | |
path, alpha = motion_module_lora_config["path"], motion_module_lora_config["alpha"] | |
print(f"load motion LoRA from {path}") | |
motion_lora_state_dict = torch.load(path, map_location="cpu") | |
motion_lora_state_dict = motion_lora_state_dict["state_dict"] if "state_dict" in motion_lora_state_dict else motion_lora_state_dict | |
motion_lora_state_dict.pop("animatediff_config", "") | |
animation_pipeline = load_diffusers_lora(animation_pipeline, motion_lora_state_dict, alpha) | |
return animation_pipeline | |
def instantiate_from_config(config): | |
if not "target" in config: | |
if config == '__is_first_stage__': | |
return None | |
elif config == "__is_unconditional__": | |
return None | |
raise KeyError("Expected key `target` to instantiate.") | |
return get_obj_from_str(config["target"])(**config.get("params", dict())) | |
def get_obj_from_str(string, reload=False): | |
module, cls = string.rsplit(".", 1) | |
if reload: | |
module_imp = importlib.import_module(module) | |
importlib.reload(module_imp) | |
return getattr(importlib.import_module(module, package=None), cls) | |
def load_checkpoint(model_file, model): | |
if not os.path.isfile(model_file): | |
raise RuntimeError(f"{model_file} does not exist") | |
state_dict = torch.load(model_file, map_location="cpu") | |
global_step = state_dict['global_step'] if "global_step" in state_dict else 0 | |
new_state_dict = state_dict["state_dict"] if "state_dict" in state_dict else state_dict | |
new_state_dict = {k.replace('module.', '') : v for k, v in new_state_dict.items()} | |
m, u = model.load_state_dict(new_state_dict, strict=False) | |
return model, global_step, m, u, new_state_dict | |
def load_model(model, model_path): | |
if model_path != "": | |
print(f"init model from checkpoint: {model_path}") | |
model_ckpt = torch.load(model_path, map_location="cpu") | |
if "global_step" in model_ckpt: print(f"global_step: {model_ckpt['global_step']}") | |
state_dict = model_ckpt["state_dict"] if "state_dict" in model_ckpt else model_ckpt | |
m, u = model.load_state_dict(state_dict, strict=False) | |
print(f"missing keys: {len(m)}, unexpected keys: {len(u)}") | |
assert len(u) == 0 | |
def interpolate_trajectory(points, n_points): | |
x = [point[0] for point in points] | |
y = [point[1] for point in points] | |
t = np.linspace(0, 1, len(points)) | |
fx = PchipInterpolator(t, x) | |
fy = PchipInterpolator(t, y) | |
new_t = np.linspace(0, 1, n_points) | |
new_x = fx(new_t) | |
new_y = fy(new_t) | |
new_points = list(zip(new_x, new_y)) | |
return new_points | |
def bivariate_Gaussian(kernel_size, sig_x, sig_y, theta, grid=None, isotropic=True): | |
"""Generate a bivariate isotropic or anisotropic Gaussian kernel. | |
In the isotropic mode, only `sig_x` is used. `sig_y` and `theta` is ignored. | |
Args: | |
kernel_size (int): | |
sig_x (float): | |
sig_y (float): | |
theta (float): Radian measurement. | |
grid (ndarray, optional): generated by :func:`mesh_grid`, | |
with the shape (K, K, 2), K is the kernel size. Default: None | |
isotropic (bool): | |
Returns: | |
kernel (ndarray): normalized kernel. | |
""" | |
if grid is None: | |
grid, _, _ = mesh_grid(kernel_size) | |
if isotropic: | |
sigma_matrix = np.array([[sig_x**2, 0], [0, sig_x**2]]) | |
else: | |
sigma_matrix = sigma_matrix2(sig_x, sig_y, theta) | |
kernel = pdf2(sigma_matrix, grid) | |
kernel = kernel / np.sum(kernel) | |
return kernel | |
def mesh_grid(kernel_size): | |
"""Generate the mesh grid, centering at zero. | |
Args: | |
kernel_size (int): | |
Returns: | |
xy (ndarray): with the shape (kernel_size, kernel_size, 2) | |
xx (ndarray): with the shape (kernel_size, kernel_size) | |
yy (ndarray): with the shape (kernel_size, kernel_size) | |
""" | |
ax = np.arange(-kernel_size // 2 + 1., kernel_size // 2 + 1.) | |
xx, yy = np.meshgrid(ax, ax) | |
xy = np.hstack((xx.reshape((kernel_size * kernel_size, 1)), yy.reshape(kernel_size * kernel_size, | |
1))).reshape(kernel_size, kernel_size, 2) | |
return xy, xx, yy | |
def pdf2(sigma_matrix, grid): | |
"""Calculate PDF of the bivariate Gaussian distribution. | |
Args: | |
sigma_matrix (ndarray): with the shape (2, 2) | |
grid (ndarray): generated by :func:`mesh_grid`, | |
with the shape (K, K, 2), K is the kernel size. | |
Returns: | |
kernel (ndarrray): un-normalized kernel. | |
""" | |
inverse_sigma = np.linalg.inv(sigma_matrix) | |
kernel = np.exp(-0.5 * np.sum(np.dot(grid, inverse_sigma) * grid, 2)) | |
return kernel | |
def sigma_matrix2(sig_x, sig_y, theta): | |
"""Calculate the rotated sigma matrix (two dimensional matrix). | |
Args: | |
sig_x (float): | |
sig_y (float): | |
theta (float): Radian measurement. | |
Returns: | |
ndarray: Rotated sigma matrix. | |
""" | |
d_matrix = np.array([[sig_x**2, 0], [0, sig_y**2]]) | |
u_matrix = np.array([[np.cos(theta), -np.sin(theta)], [np.sin(theta), np.cos(theta)]]) | |
return np.dot(u_matrix, np.dot(d_matrix, u_matrix.T)) | |
def create_image_controlnet(controlnet_config, unet, controlnet_path=""): | |
# load controlnet model | |
controlnet = None | |
unet.config.num_attention_heads = 8 | |
unet.config.projection_class_embeddings_input_dim = None | |
controlnet_config = OmegaConf.load(controlnet_config) | |
controlnet = ImageControlNetModel.from_unet(unet, controlnet_additional_kwargs=controlnet_config.get("controlnet_additional_kwargs", {})) | |
if controlnet_path != "": | |
print(f"loading controlnet checkpoint from {controlnet_path} ...") | |
controlnet_state_dict = torch.load(controlnet_path, map_location="cuda") | |
if "global_step" in controlnet_state_dict: print(f"global_step: {controlnet_state_dict['global_step']}") | |
controlnet_state_dict = controlnet_state_dict["state_dict"] if "state_dict" in controlnet_state_dict else controlnet_state_dict | |
controlnet_state_dict.pop("animatediff_config", "") | |
controlnet.load_state_dict(controlnet_state_dict) | |
return controlnet | |
def create_flow_controlnet(controlnet_config, unet, controlnet_path=""): | |
# load controlnet model | |
controlnet = None | |
unet.config.num_attention_heads = 8 | |
unet.config.projection_class_embeddings_input_dim = None | |
controlnet_config = OmegaConf.load(controlnet_config) | |
controlnet = FlowControlNetModel.from_unet(unet, controlnet_additional_kwargs=controlnet_config.get("controlnet_additional_kwargs", {})) | |
if controlnet_path != "": | |
print(f"loading controlnet checkpoint from {controlnet_path} ...") | |
controlnet_state_dict = torch.load(controlnet_path, map_location="cuda") | |
controlnet_state_dict = controlnet_state_dict["controlnet"] if "controlnet" in controlnet_state_dict else controlnet_state_dict | |
controlnet_state_dict.pop("animatediff_config", "") | |
controlnet.load_state_dict(controlnet_state_dict) | |
return controlnet | |