File size: 15,827 Bytes
ad06aed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
#
# Modified by Jiale Xu
# The modifications are subject to the same license as the original.


"""
The renderer is a module that takes in rays, decides where to sample along each
ray, and computes pixel colors using the volume rendering equation.
"""

import torch
import torch.nn as nn
import torch.nn.functional as F

from .ray_marcher import MipRayMarcher2
from . import math_utils


def generate_planes():
    """
    Defines planes by the three vectors that form the "axes" of the
    plane. Should work with arbitrary number of planes and planes of
    arbitrary orientation.

    Bugfix reference: https://github.com/NVlabs/eg3d/issues/67
    """
    return torch.tensor([[[1, 0, 0],
                            [0, 1, 0],
                            [0, 0, 1]],
                            [[1, 0, 0],
                            [0, 0, 1],
                            [0, 1, 0]],
                            [[0, 0, 1],
                            [0, 1, 0],
                            [1, 0, 0]]], dtype=torch.float32)

def project_onto_planes(planes, coordinates):
    """
    Does a projection of a 3D point onto a batch of 2D planes,
    returning 2D plane coordinates.

    Takes plane axes of shape n_planes, 3, 3
    # Takes coordinates of shape N, M, 3
    # returns projections of shape N*n_planes, M, 2
    """
    N, M, C = coordinates.shape
    n_planes, _, _ = planes.shape
    coordinates = coordinates.unsqueeze(1).expand(-1, n_planes, -1, -1).reshape(N*n_planes, M, 3)
    inv_planes = torch.linalg.inv(planes).unsqueeze(0).expand(N, -1, -1, -1).reshape(N*n_planes, 3, 3)
    projections = torch.bmm(coordinates, inv_planes)
    return projections[..., :2]

def sample_from_planes(plane_axes, plane_features, coordinates, mode='bilinear', padding_mode='zeros', box_warp=None):
    assert padding_mode == 'zeros'
    N, n_planes, C, H, W = plane_features.shape
    _, M, _ = coordinates.shape
    plane_features = plane_features.view(N*n_planes, C, H, W)
    dtype = plane_features.dtype

    coordinates = (2/box_warp) * coordinates # add specific box bounds

    projected_coordinates = project_onto_planes(plane_axes, coordinates).unsqueeze(1)
    output_features = torch.nn.functional.grid_sample(
        plane_features, 
        projected_coordinates.to(dtype), 
        mode=mode, 
        padding_mode=padding_mode, 
        align_corners=False,
    ).permute(0, 3, 2, 1).reshape(N, n_planes, M, C)
    return output_features

def sample_from_3dgrid(grid, coordinates):
    """
    Expects coordinates in shape (batch_size, num_points_per_batch, 3)
    Expects grid in shape (1, channels, H, W, D)
    (Also works if grid has batch size)
    Returns sampled features of shape (batch_size, num_points_per_batch, feature_channels)
    """
    batch_size, n_coords, n_dims = coordinates.shape
    sampled_features = torch.nn.functional.grid_sample(
        grid.expand(batch_size, -1, -1, -1, -1),
        coordinates.reshape(batch_size, 1, 1, -1, n_dims),
        mode='bilinear', 
        padding_mode='zeros', 
        align_corners=False,
    )
    N, C, H, W, D = sampled_features.shape
    sampled_features = sampled_features.permute(0, 4, 3, 2, 1).reshape(N, H*W*D, C)
    return sampled_features

class ImportanceRenderer(torch.nn.Module):
    """
    Modified original version to filter out-of-box samples as TensoRF does.
    
    Reference:
    TensoRF: https://github.com/apchenstu/TensoRF/blob/main/models/tensorBase.py#L277
    """
    def __init__(self):
        super().__init__()
        self.activation_factory = self._build_activation_factory()
        self.ray_marcher = MipRayMarcher2(self.activation_factory)
        self.plane_axes = generate_planes()

    def _build_activation_factory(self):
        def activation_factory(options: dict):
            if options['clamp_mode'] == 'softplus':
                return lambda x: F.softplus(x - 1)  # activation bias of -1 makes things initialize better
            else:
                assert False, "Renderer only supports `clamp_mode`=`softplus`!"
        return activation_factory

    def _forward_pass(self, depths: torch.Tensor, ray_directions: torch.Tensor, ray_origins: torch.Tensor,
                        planes: torch.Tensor, decoder: nn.Module, rendering_options: dict):
        """
        Additional filtering is applied to filter out-of-box samples.
        Modifications made by Zexin He.
        """

        # context related variables
        batch_size, num_rays, samples_per_ray, _ = depths.shape
        device = depths.device

        # define sample points with depths
        sample_directions = ray_directions.unsqueeze(-2).expand(-1, -1, samples_per_ray, -1).reshape(batch_size, -1, 3)
        sample_coordinates = (ray_origins.unsqueeze(-2) + depths * ray_directions.unsqueeze(-2)).reshape(batch_size, -1, 3)

        # filter out-of-box samples
        mask_inbox = \
            (rendering_options['sampler_bbox_min'] <= sample_coordinates) & \
                (sample_coordinates <= rendering_options['sampler_bbox_max'])
        mask_inbox = mask_inbox.all(-1)

        # forward model according to all samples
        _out = self.run_model(planes, decoder, sample_coordinates, sample_directions, rendering_options)

        # set out-of-box samples to zeros(rgb) & -inf(sigma)
        SAFE_GUARD = 3
        DATA_TYPE = _out['sigma'].dtype
        colors_pass = torch.zeros(batch_size, num_rays * samples_per_ray, 3, device=device, dtype=DATA_TYPE)
        densities_pass = torch.nan_to_num(torch.full((batch_size, num_rays * samples_per_ray, 1), -float('inf'), device=device, dtype=DATA_TYPE)) / SAFE_GUARD
        colors_pass[mask_inbox], densities_pass[mask_inbox] = _out['rgb'][mask_inbox], _out['sigma'][mask_inbox]

        # reshape back
        colors_pass = colors_pass.reshape(batch_size, num_rays, samples_per_ray, colors_pass.shape[-1])
        densities_pass = densities_pass.reshape(batch_size, num_rays, samples_per_ray, densities_pass.shape[-1])

        return colors_pass, densities_pass

    def forward(self, planes, decoder, ray_origins, ray_directions, rendering_options):
        # self.plane_axes = self.plane_axes.to(ray_origins.device)

        if rendering_options['ray_start'] == rendering_options['ray_end'] == 'auto':
            ray_start, ray_end = math_utils.get_ray_limits_box(ray_origins, ray_directions, box_side_length=rendering_options['box_warp'])
            is_ray_valid = ray_end > ray_start
            if torch.any(is_ray_valid).item():
                ray_start[~is_ray_valid] = ray_start[is_ray_valid].min()
                ray_end[~is_ray_valid] = ray_start[is_ray_valid].max()
            depths_coarse = self.sample_stratified(ray_origins, ray_start, ray_end, rendering_options['depth_resolution'], rendering_options['disparity_space_sampling'])
        else:
            # Create stratified depth samples
            depths_coarse = self.sample_stratified(ray_origins, rendering_options['ray_start'], rendering_options['ray_end'], rendering_options['depth_resolution'], rendering_options['disparity_space_sampling'])

        # Coarse Pass
        colors_coarse, densities_coarse = self._forward_pass(
            depths=depths_coarse, ray_directions=ray_directions, ray_origins=ray_origins,
            planes=planes, decoder=decoder, rendering_options=rendering_options)

        # Fine Pass
        N_importance = rendering_options['depth_resolution_importance']
        if N_importance > 0:
            _, _, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options)

            depths_fine = self.sample_importance(depths_coarse, weights, N_importance)

            colors_fine, densities_fine = self._forward_pass(
                depths=depths_fine, ray_directions=ray_directions, ray_origins=ray_origins,
                planes=planes, decoder=decoder, rendering_options=rendering_options)

            all_depths, all_colors, all_densities = self.unify_samples(depths_coarse, colors_coarse, densities_coarse,
                                                                depths_fine, colors_fine, densities_fine)

            rgb_final, depth_final, weights = self.ray_marcher(all_colors, all_densities, all_depths, rendering_options)
        else:
            rgb_final, depth_final, weights = self.ray_marcher(colors_coarse, densities_coarse, depths_coarse, rendering_options)

        return rgb_final, depth_final, weights.sum(2)
    
    def run_model(self, planes, decoder, sample_coordinates, sample_directions, options):
        plane_axes = self.plane_axes.to(planes.device)
        sampled_features = sample_from_planes(plane_axes, planes, sample_coordinates, padding_mode='zeros', box_warp=options['box_warp'])

        out = decoder(sampled_features, sample_directions)
        if options.get('density_noise', 0) > 0:
            out['sigma'] += torch.randn_like(out['sigma']) * options['density_noise']
        return out

    def run_model_activated(self, planes, decoder, sample_coordinates, sample_directions, options):
        out = self.run_model(planes, decoder, sample_coordinates, sample_directions, options)
        out['sigma'] = self.activation_factory(options)(out['sigma'])
        return out

    def sort_samples(self, all_depths, all_colors, all_densities):
        _, indices = torch.sort(all_depths, dim=-2)
        all_depths = torch.gather(all_depths, -2, indices)
        all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1]))
        all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1))
        return all_depths, all_colors, all_densities

    def unify_samples(self, depths1, colors1, densities1, depths2, colors2, densities2, normals1=None, normals2=None):
        all_depths = torch.cat([depths1, depths2], dim = -2)
        all_colors = torch.cat([colors1, colors2], dim = -2)
        all_densities = torch.cat([densities1, densities2], dim = -2)

        if normals1 is not None and normals2 is not None:
            all_normals = torch.cat([normals1, normals2], dim = -2)
        else:
            all_normals = None

        _, indices = torch.sort(all_depths, dim=-2)
        all_depths = torch.gather(all_depths, -2, indices)
        all_colors = torch.gather(all_colors, -2, indices.expand(-1, -1, -1, all_colors.shape[-1]))
        all_densities = torch.gather(all_densities, -2, indices.expand(-1, -1, -1, 1))

        if all_normals is not None: 
            all_normals = torch.gather(all_normals, -2, indices.expand(-1, -1, -1, all_normals.shape[-1]))
            return all_depths, all_colors, all_normals, all_densities

        return all_depths, all_colors, all_densities

    def sample_stratified(self, ray_origins, ray_start, ray_end, depth_resolution, disparity_space_sampling=False):
        """
        Return depths of approximately uniformly spaced samples along rays.
        """
        N, M, _ = ray_origins.shape
        if disparity_space_sampling:
            depths_coarse = torch.linspace(0,
                                    1,
                                    depth_resolution,
                                    device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1)
            depth_delta = 1/(depth_resolution - 1)
            depths_coarse += torch.rand_like(depths_coarse) * depth_delta
            depths_coarse = 1./(1./ray_start * (1. - depths_coarse) + 1./ray_end * depths_coarse)
        else:
            if type(ray_start) == torch.Tensor:
                depths_coarse = math_utils.linspace(ray_start, ray_end, depth_resolution).permute(1,2,0,3)
                depth_delta = (ray_end - ray_start) / (depth_resolution - 1)
                depths_coarse += torch.rand_like(depths_coarse) * depth_delta[..., None]
            else:
                depths_coarse = torch.linspace(ray_start, ray_end, depth_resolution, device=ray_origins.device).reshape(1, 1, depth_resolution, 1).repeat(N, M, 1, 1)
                depth_delta = (ray_end - ray_start)/(depth_resolution - 1)
                depths_coarse += torch.rand_like(depths_coarse) * depth_delta

        return depths_coarse

    def sample_importance(self, z_vals, weights, N_importance):
        """
        Return depths of importance sampled points along rays. See NeRF importance sampling for more.
        """
        with torch.no_grad():
            batch_size, num_rays, samples_per_ray, _ = z_vals.shape

            z_vals = z_vals.reshape(batch_size * num_rays, samples_per_ray)
            weights = weights.reshape(batch_size * num_rays, -1) # -1 to account for loss of 1 sample in MipRayMarcher

            # smooth weights
            weights = torch.nn.functional.max_pool1d(weights.unsqueeze(1), 2, 1, padding=1)
            weights = torch.nn.functional.avg_pool1d(weights, 2, 1).squeeze()
            weights = weights + 0.01

            z_vals_mid = 0.5 * (z_vals[: ,:-1] + z_vals[: ,1:])
            importance_z_vals = self.sample_pdf(z_vals_mid, weights[:, 1:-1],
                                             N_importance).detach().reshape(batch_size, num_rays, N_importance, 1)
        return importance_z_vals

    def sample_pdf(self, bins, weights, N_importance, det=False, eps=1e-5):
        """
        Sample @N_importance samples from @bins with distribution defined by @weights.
        Inputs:
            bins: (N_rays, N_samples_+1) where N_samples_ is "the number of coarse samples per ray - 2"
            weights: (N_rays, N_samples_)
            N_importance: the number of samples to draw from the distribution
            det: deterministic or not
            eps: a small number to prevent division by zero
        Outputs:
            samples: the sampled samples
        """
        N_rays, N_samples_ = weights.shape
        weights = weights + eps # prevent division by zero (don't do inplace op!)
        pdf = weights / torch.sum(weights, -1, keepdim=True) # (N_rays, N_samples_)
        cdf = torch.cumsum(pdf, -1) # (N_rays, N_samples), cumulative distribution function
        cdf = torch.cat([torch.zeros_like(cdf[: ,:1]), cdf], -1)  # (N_rays, N_samples_+1)
                                                                   # padded to 0~1 inclusive

        if det:
            u = torch.linspace(0, 1, N_importance, device=bins.device)
            u = u.expand(N_rays, N_importance)
        else:
            u = torch.rand(N_rays, N_importance, device=bins.device)
        u = u.contiguous()

        inds = torch.searchsorted(cdf, u, right=True)
        below = torch.clamp_min(inds-1, 0)
        above = torch.clamp_max(inds, N_samples_)

        inds_sampled = torch.stack([below, above], -1).view(N_rays, 2*N_importance)
        cdf_g = torch.gather(cdf, 1, inds_sampled).view(N_rays, N_importance, 2)
        bins_g = torch.gather(bins, 1, inds_sampled).view(N_rays, N_importance, 2)

        denom = cdf_g[...,1]-cdf_g[...,0]
        denom[denom<eps] = 1 # denom equals 0 means a bin has weight 0, in which case it will not be sampled
                             # anyway, therefore any value for it is fine (set to 1 here)

        samples = bins_g[...,0] + (u-cdf_g[...,0])/denom * (bins_g[...,1]-bins_g[...,0])
        return samples