Spaces:
Running
on
A10G
Running
on
A10G
ljzycmd
commited on
Commit
•
5fc5efa
1
Parent(s):
bfee1f8
Add hugging face space demo.
Browse files- app.py +55 -0
- gradio_app/app_utils.py +30 -0
- gradio_app/image_synthesis_app.py +166 -0
- gradio_app/images/corgi.jpg +0 -0
- gradio_app/images/person.png +0 -0
- gradio_app/real_image_editing_app.py +162 -0
- masactrl/__init__.py +0 -0
- masactrl/diffuser_utils.py +275 -0
- masactrl/masactrl.py +280 -0
- masactrl/masactrl_utils.py +212 -0
- playground.ipynb +149 -0
- playground_real.ipynb +188 -0
- requirements.txt +3 -0
- style.css +3 -0
app.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from diffusers import DDIMScheduler
|
5 |
+
from pytorch_lightning import seed_everything
|
6 |
+
|
7 |
+
from masactrl.diffuser_utils import MasaCtrlPipeline
|
8 |
+
from masactrl.masactrl_utils import (AttentionBase,
|
9 |
+
regiter_attention_editor_diffusers)
|
10 |
+
|
11 |
+
torch.set_grad_enabled(False)
|
12 |
+
|
13 |
+
from gradio_app.image_synthesis_app import create_demo_synthesis
|
14 |
+
from gradio_app.real_image_editing_app import create_demo_editing
|
15 |
+
|
16 |
+
from gradio_app.app_utils import global_context
|
17 |
+
|
18 |
+
|
19 |
+
TITLE = "# [MasaCtrl](https://ljzycmd.github.io/projects/MasaCtrl/)"
|
20 |
+
DESCRIPTION = "<b>Gradio demo for MasaCtrl</b>: [[GitHub]](https://github.com/TencentARC/MasaCtrl), \
|
21 |
+
[[Paper]](https://arxiv.org/abs/2304.08465). \
|
22 |
+
If MasaCtrl is helpful, please help to ⭐ the [Github Repo](https://github.com/TencentARC/MasaCtrl) 😊 </p>"
|
23 |
+
|
24 |
+
DESCRIPTION += '<p>For faster inference without waiting in queue, \
|
25 |
+
you may duplicate the space and upgrade to GPU in settings. </p>'
|
26 |
+
|
27 |
+
|
28 |
+
with gr.Blocks(css="style.css") as demo:
|
29 |
+
gr.Markdown(TITLE)
|
30 |
+
gr.Markdown(DESCRIPTION)
|
31 |
+
model_path_gr = gr.Dropdown(
|
32 |
+
["andite/anything-v4.0",
|
33 |
+
"CompVis/stable-diffusion-v1-4",
|
34 |
+
"runwayml/stable-diffusion-v1-5"],
|
35 |
+
value="andite/anything-v4.0",
|
36 |
+
label="Model", info="Select the model to use!"
|
37 |
+
)
|
38 |
+
with gr.Tab("Consistent Synthesis"):
|
39 |
+
create_demo_synthesis()
|
40 |
+
with gr.Tab("Real Editing"):
|
41 |
+
create_demo_editing()
|
42 |
+
|
43 |
+
def reload_ckpt(model_path):
|
44 |
+
print("Reloading model from", model_path)
|
45 |
+
global_context["model"] = MasaCtrlPipeline.from_pretrained(
|
46 |
+
model_path, scheduler=global_context["scheduler"]).to(global_context["device"])
|
47 |
+
|
48 |
+
model_path_gr.select(
|
49 |
+
reload_ckpt,
|
50 |
+
[model_path_gr]
|
51 |
+
)
|
52 |
+
|
53 |
+
|
54 |
+
if __name__ == "__main__":
|
55 |
+
demo.launch()
|
gradio_app/app_utils.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from diffusers import DDIMScheduler
|
5 |
+
from pytorch_lightning import seed_everything
|
6 |
+
|
7 |
+
from masactrl.diffuser_utils import MasaCtrlPipeline
|
8 |
+
from masactrl.masactrl_utils import (AttentionBase,
|
9 |
+
regiter_attention_editor_diffusers)
|
10 |
+
|
11 |
+
|
12 |
+
torch.set_grad_enabled(False)
|
13 |
+
|
14 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device(
|
15 |
+
"cpu")
|
16 |
+
model_path = "andite/anything-v4.0"
|
17 |
+
scheduler = DDIMScheduler(beta_start=0.00085,
|
18 |
+
beta_end=0.012,
|
19 |
+
beta_schedule="scaled_linear",
|
20 |
+
clip_sample=False,
|
21 |
+
set_alpha_to_one=False)
|
22 |
+
model = MasaCtrlPipeline.from_pretrained(model_path,
|
23 |
+
scheduler=scheduler).to(device)
|
24 |
+
|
25 |
+
global_context = {
|
26 |
+
"model_path": model_path,
|
27 |
+
"scheduler": scheduler,
|
28 |
+
"model": model,
|
29 |
+
"device": device
|
30 |
+
}
|
gradio_app/image_synthesis_app.py
ADDED
@@ -0,0 +1,166 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import numpy as np
|
3 |
+
import torch
|
4 |
+
from diffusers import DDIMScheduler
|
5 |
+
from pytorch_lightning import seed_everything
|
6 |
+
|
7 |
+
from masactrl.diffuser_utils import MasaCtrlPipeline
|
8 |
+
from masactrl.masactrl_utils import (AttentionBase,
|
9 |
+
regiter_attention_editor_diffusers)
|
10 |
+
|
11 |
+
from .app_utils import global_context
|
12 |
+
|
13 |
+
torch.set_grad_enabled(False)
|
14 |
+
|
15 |
+
# device = torch.device("cuda") if torch.cuda.is_available() else torch.device(
|
16 |
+
# "cpu")
|
17 |
+
# model_path = "andite/anything-v4.0"
|
18 |
+
# scheduler = DDIMScheduler(beta_start=0.00085,
|
19 |
+
# beta_end=0.012,
|
20 |
+
# beta_schedule="scaled_linear",
|
21 |
+
# clip_sample=False,
|
22 |
+
# set_alpha_to_one=False)
|
23 |
+
# model = MasaCtrlPipeline.from_pretrained(model_path,
|
24 |
+
# scheduler=scheduler).to(device)
|
25 |
+
|
26 |
+
|
27 |
+
def consistent_synthesis(source_prompt, target_prompt, starting_step,
|
28 |
+
starting_layer, image_resolution, ddim_steps, scale,
|
29 |
+
seed, appended_prompt, negative_prompt):
|
30 |
+
from masactrl.masactrl import MutualSelfAttentionControl
|
31 |
+
|
32 |
+
model = global_context["model"]
|
33 |
+
device = global_context["device"]
|
34 |
+
|
35 |
+
seed_everything(seed)
|
36 |
+
|
37 |
+
with torch.no_grad():
|
38 |
+
if appended_prompt is not None:
|
39 |
+
source_prompt += appended_prompt
|
40 |
+
target_prompt += appended_prompt
|
41 |
+
prompts = [source_prompt, target_prompt]
|
42 |
+
|
43 |
+
# initialize the noise map
|
44 |
+
start_code = torch.randn([1, 4, 64, 64], device=device)
|
45 |
+
start_code = start_code.expand(len(prompts), -1, -1, -1)
|
46 |
+
|
47 |
+
# inference the synthesized image without MasaCtrl
|
48 |
+
editor = AttentionBase()
|
49 |
+
regiter_attention_editor_diffusers(model, editor)
|
50 |
+
target_image_ori = model([target_prompt],
|
51 |
+
latents=start_code[-1:],
|
52 |
+
guidance_scale=7.5)
|
53 |
+
target_image_ori = target_image_ori.cpu().permute(0, 2, 3, 1).numpy()
|
54 |
+
|
55 |
+
# inference the synthesized image with MasaCtrl
|
56 |
+
# hijack the attention module
|
57 |
+
controller = MutualSelfAttentionControl(starting_step, starting_layer)
|
58 |
+
regiter_attention_editor_diffusers(model, controller)
|
59 |
+
|
60 |
+
# inference the synthesized image
|
61 |
+
image_masactrl = model(prompts, latents=start_code, guidance_scale=7.5)
|
62 |
+
image_masactrl = image_masactrl.cpu().permute(0, 2, 3, 1).numpy()
|
63 |
+
|
64 |
+
return [image_masactrl[0], target_image_ori[0],
|
65 |
+
image_masactrl[1]] # source, fixed seed, masactrl
|
66 |
+
|
67 |
+
|
68 |
+
def create_demo_synthesis():
|
69 |
+
with gr.Blocks() as demo:
|
70 |
+
gr.Markdown("## **Input Settings**")
|
71 |
+
with gr.Row():
|
72 |
+
with gr.Column():
|
73 |
+
source_prompt = gr.Textbox(
|
74 |
+
label="Source Prompt",
|
75 |
+
value='1boy, casual, outdoors, sitting',
|
76 |
+
interactive=True)
|
77 |
+
target_prompt = gr.Textbox(
|
78 |
+
label="Target Prompt",
|
79 |
+
value='1boy, casual, outdoors, standing',
|
80 |
+
interactive=True)
|
81 |
+
with gr.Row():
|
82 |
+
ddim_steps = gr.Slider(label="DDIM Steps",
|
83 |
+
minimum=1,
|
84 |
+
maximum=999,
|
85 |
+
value=50,
|
86 |
+
step=1)
|
87 |
+
starting_step = gr.Slider(
|
88 |
+
label="Step of MasaCtrl",
|
89 |
+
minimum=0,
|
90 |
+
maximum=999,
|
91 |
+
value=4,
|
92 |
+
step=1)
|
93 |
+
starting_layer = gr.Slider(label="Layer of MasaCtrl",
|
94 |
+
minimum=0,
|
95 |
+
maximum=16,
|
96 |
+
value=10,
|
97 |
+
step=1)
|
98 |
+
run_btn = gr.Button(label="Run")
|
99 |
+
with gr.Column():
|
100 |
+
appended_prompt = gr.Textbox(label="Appended Prompt", value='')
|
101 |
+
negative_prompt = gr.Textbox(label="Negative Prompt", value='')
|
102 |
+
with gr.Row():
|
103 |
+
image_resolution = gr.Slider(label="Image Resolution",
|
104 |
+
minimum=256,
|
105 |
+
maximum=768,
|
106 |
+
value=512,
|
107 |
+
step=64)
|
108 |
+
scale = gr.Slider(label="CFG Scale",
|
109 |
+
minimum=0.1,
|
110 |
+
maximum=30.0,
|
111 |
+
value=7.5,
|
112 |
+
step=0.1)
|
113 |
+
seed = gr.Slider(label="Seed",
|
114 |
+
minimum=-1,
|
115 |
+
maximum=2147483647,
|
116 |
+
value=42,
|
117 |
+
step=1)
|
118 |
+
|
119 |
+
gr.Markdown("## **Output**")
|
120 |
+
with gr.Row():
|
121 |
+
image_source = gr.Image(label="Source Image")
|
122 |
+
image_fixed = gr.Image(label="Image with Fixed Seed")
|
123 |
+
image_masactrl = gr.Image(label="Image with MasaCtrl")
|
124 |
+
|
125 |
+
inputs = [
|
126 |
+
source_prompt, target_prompt, starting_step, starting_layer,
|
127 |
+
image_resolution, ddim_steps, scale, seed, appended_prompt,
|
128 |
+
negative_prompt
|
129 |
+
]
|
130 |
+
run_btn.click(consistent_synthesis, inputs,
|
131 |
+
[image_source, image_fixed, image_masactrl])
|
132 |
+
|
133 |
+
gr.Examples(
|
134 |
+
[[
|
135 |
+
"1boy, bishounen, casual, indoors, sitting, coffee shop, bokeh",
|
136 |
+
"1boy, bishounen, casual, indoors, standing, coffee shop, bokeh",
|
137 |
+
42
|
138 |
+
],
|
139 |
+
[
|
140 |
+
"1boy, casual, outdoors, sitting",
|
141 |
+
"1boy, casual, outdoors, sitting, side view", 42
|
142 |
+
],
|
143 |
+
[
|
144 |
+
"1boy, casual, outdoors, sitting",
|
145 |
+
"1boy, casual, outdoors, standing, clapping hands", 42
|
146 |
+
],
|
147 |
+
[
|
148 |
+
"1boy, casual, outdoors, sitting",
|
149 |
+
"1boy, casual, outdoors, sitting, shows thumbs up", 42
|
150 |
+
],
|
151 |
+
[
|
152 |
+
"1boy, casual, outdoors, sitting",
|
153 |
+
"1boy, casual, outdoors, sitting, with crossed arms", 42
|
154 |
+
],
|
155 |
+
[
|
156 |
+
"1boy, casual, outdoors, sitting",
|
157 |
+
"1boy, casual, outdoors, sitting, rasing hands", 42
|
158 |
+
]],
|
159 |
+
[source_prompt, target_prompt, seed],
|
160 |
+
)
|
161 |
+
return demo
|
162 |
+
|
163 |
+
|
164 |
+
if __name__ == "__main__":
|
165 |
+
demo_syntehsis = create_demo_synthesis()
|
166 |
+
demo_synthesis.launch()
|
gradio_app/images/corgi.jpg
ADDED
gradio_app/images/person.png
ADDED
gradio_app/real_image_editing_app.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import numpy as np
|
3 |
+
import gradio as gr
|
4 |
+
import torch
|
5 |
+
import torch.nn.functional as F
|
6 |
+
from diffusers import DDIMScheduler
|
7 |
+
from torchvision.io import read_image
|
8 |
+
from pytorch_lightning import seed_everything
|
9 |
+
|
10 |
+
from masactrl.diffuser_utils import MasaCtrlPipeline
|
11 |
+
from masactrl.masactrl_utils import (AttentionBase,
|
12 |
+
regiter_attention_editor_diffusers)
|
13 |
+
|
14 |
+
from .app_utils import global_context
|
15 |
+
|
16 |
+
torch.set_grad_enabled(False)
|
17 |
+
|
18 |
+
# device = torch.device("cuda") if torch.cuda.is_available() else torch.device(
|
19 |
+
# "cpu")
|
20 |
+
|
21 |
+
# model_path = "CompVis/stable-diffusion-v1-4"
|
22 |
+
# scheduler = DDIMScheduler(beta_start=0.00085,
|
23 |
+
# beta_end=0.012,
|
24 |
+
# beta_schedule="scaled_linear",
|
25 |
+
# clip_sample=False,
|
26 |
+
# set_alpha_to_one=False)
|
27 |
+
# model = MasaCtrlPipeline.from_pretrained(model_path,
|
28 |
+
# scheduler=scheduler).to(device)
|
29 |
+
|
30 |
+
|
31 |
+
def load_image(image_path):
|
32 |
+
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
33 |
+
image = read_image(image_path)
|
34 |
+
image = image[:3].unsqueeze_(0).float() / 127.5 - 1. # [-1, 1]
|
35 |
+
image = F.interpolate(image, (512, 512))
|
36 |
+
image = image.to(device)
|
37 |
+
|
38 |
+
|
39 |
+
def real_image_editing(source_image, target_prompt,
|
40 |
+
starting_step, starting_layer, ddim_steps, scale, seed,
|
41 |
+
appended_prompt, negative_prompt):
|
42 |
+
from masactrl.masactrl import MutualSelfAttentionControl
|
43 |
+
|
44 |
+
model = global_context["model"]
|
45 |
+
device = global_context["device"]
|
46 |
+
|
47 |
+
seed_everything(seed)
|
48 |
+
|
49 |
+
with torch.no_grad():
|
50 |
+
if appended_prompt is not None:
|
51 |
+
target_prompt += appended_prompt
|
52 |
+
ref_prompt = ""
|
53 |
+
prompts = [ref_prompt, target_prompt]
|
54 |
+
|
55 |
+
# invert the image into noise map
|
56 |
+
if isinstance(source_image, np.ndarray):
|
57 |
+
source_image = torch.from_numpy(source_image).to(device) / 127.5 - 1.
|
58 |
+
source_image = source_image.unsqueeze(0).permute(0, 3, 1, 2)
|
59 |
+
source_image = F.interpolate(source_image, (512, 512))
|
60 |
+
|
61 |
+
start_code, latents_list = model.invert(source_image,
|
62 |
+
ref_prompt,
|
63 |
+
guidance_scale=scale,
|
64 |
+
num_inference_steps=ddim_steps,
|
65 |
+
return_intermediates=True)
|
66 |
+
start_code = start_code.expand(len(prompts), -1, -1, -1)
|
67 |
+
|
68 |
+
# recontruct the image with inverted DDIM noise map
|
69 |
+
editor = AttentionBase()
|
70 |
+
regiter_attention_editor_diffusers(model, editor)
|
71 |
+
image_fixed = model([target_prompt],
|
72 |
+
latents=start_code[-1:],
|
73 |
+
num_inference_steps=ddim_steps,
|
74 |
+
guidance_scale=scale)
|
75 |
+
image_fixed = image_fixed.cpu().permute(0, 2, 3, 1).numpy()
|
76 |
+
|
77 |
+
# inference the synthesized image with MasaCtrl
|
78 |
+
# hijack the attention module
|
79 |
+
controller = MutualSelfAttentionControl(starting_step, starting_layer)
|
80 |
+
regiter_attention_editor_diffusers(model, controller)
|
81 |
+
|
82 |
+
# inference the synthesized image
|
83 |
+
image_masactrl = model(prompts,
|
84 |
+
latents=start_code,
|
85 |
+
guidance_scale=scale)
|
86 |
+
image_masactrl = image_masactrl.cpu().permute(0, 2, 3, 1).numpy()
|
87 |
+
|
88 |
+
return [
|
89 |
+
image_masactrl[0],
|
90 |
+
image_fixed[0],
|
91 |
+
image_masactrl[1]
|
92 |
+
] # source, fixed seed, masactrl
|
93 |
+
|
94 |
+
|
95 |
+
def create_demo_editing():
|
96 |
+
with gr.Blocks() as demo:
|
97 |
+
gr.Markdown("## **Input Settings**")
|
98 |
+
with gr.Row():
|
99 |
+
with gr.Column():
|
100 |
+
source_image = gr.Image(label="Source Image", value=os.path.join(os.path.dirname(__file__), "images/corgi.jpg"), interactive=True)
|
101 |
+
target_prompt = gr.Textbox(label="Target Prompt",
|
102 |
+
value='A photo of a running corgi',
|
103 |
+
interactive=True)
|
104 |
+
with gr.Row():
|
105 |
+
ddim_steps = gr.Slider(label="DDIM Steps",
|
106 |
+
minimum=1,
|
107 |
+
maximum=999,
|
108 |
+
value=50,
|
109 |
+
step=1)
|
110 |
+
starting_step = gr.Slider(label="Step of MasaCtrl",
|
111 |
+
minimum=0,
|
112 |
+
maximum=999,
|
113 |
+
value=4,
|
114 |
+
step=1)
|
115 |
+
starting_layer = gr.Slider(label="Layer of MasaCtrl",
|
116 |
+
minimum=0,
|
117 |
+
maximum=16,
|
118 |
+
value=10,
|
119 |
+
step=1)
|
120 |
+
run_btn = gr.Button(label="Run")
|
121 |
+
with gr.Column():
|
122 |
+
appended_prompt = gr.Textbox(label="Appended Prompt", value='')
|
123 |
+
negative_prompt = gr.Textbox(label="Negative Prompt", value='')
|
124 |
+
with gr.Row():
|
125 |
+
scale = gr.Slider(label="CFG Scale",
|
126 |
+
minimum=0.1,
|
127 |
+
maximum=30.0,
|
128 |
+
value=7.5,
|
129 |
+
step=0.1)
|
130 |
+
seed = gr.Slider(label="Seed",
|
131 |
+
minimum=-1,
|
132 |
+
maximum=2147483647,
|
133 |
+
value=42,
|
134 |
+
step=1)
|
135 |
+
|
136 |
+
gr.Markdown("## **Output**")
|
137 |
+
with gr.Row():
|
138 |
+
image_recons = gr.Image(label="Source Image")
|
139 |
+
image_fixed = gr.Image(label="Image with Fixed Seed")
|
140 |
+
image_masactrl = gr.Image(label="Image with MasaCtrl")
|
141 |
+
|
142 |
+
inputs = [
|
143 |
+
source_image, target_prompt, starting_step, starting_layer, ddim_steps,
|
144 |
+
scale, seed, appended_prompt, negative_prompt
|
145 |
+
]
|
146 |
+
run_btn.click(real_image_editing, inputs,
|
147 |
+
[image_recons, image_fixed, image_masactrl])
|
148 |
+
|
149 |
+
gr.Examples(
|
150 |
+
[[os.path.join(os.path.dirname(__file__), "images/corgi.jpg"),
|
151 |
+
"A photo of a running corgi"],
|
152 |
+
[os.path.join(os.path.dirname(__file__), "images/person.png"),
|
153 |
+
"A photo of a person, black t-shirt, raising hand"],
|
154 |
+
],
|
155 |
+
[source_image, target_prompt]
|
156 |
+
)
|
157 |
+
return demo
|
158 |
+
|
159 |
+
|
160 |
+
if __name__ == "__main__":
|
161 |
+
demo_editing = create_demo_editing()
|
162 |
+
demo_editing.launch()
|
masactrl/__init__.py
ADDED
File without changes
|
masactrl/diffuser_utils.py
ADDED
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
Util functions based on Diffuser framework.
|
3 |
+
"""
|
4 |
+
|
5 |
+
|
6 |
+
import os
|
7 |
+
import torch
|
8 |
+
import cv2
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
import torch.nn.functional as F
|
12 |
+
from tqdm import tqdm
|
13 |
+
from PIL import Image
|
14 |
+
from torchvision.utils import save_image
|
15 |
+
from torchvision.io import read_image
|
16 |
+
|
17 |
+
from diffusers import StableDiffusionPipeline
|
18 |
+
|
19 |
+
from pytorch_lightning import seed_everything
|
20 |
+
|
21 |
+
|
22 |
+
class MasaCtrlPipeline(StableDiffusionPipeline):
|
23 |
+
|
24 |
+
def next_step(
|
25 |
+
self,
|
26 |
+
model_output: torch.FloatTensor,
|
27 |
+
timestep: int,
|
28 |
+
x: torch.FloatTensor,
|
29 |
+
eta=0.,
|
30 |
+
verbose=False
|
31 |
+
):
|
32 |
+
"""
|
33 |
+
Inverse sampling for DDIM Inversion
|
34 |
+
"""
|
35 |
+
if verbose:
|
36 |
+
print("timestep: ", timestep)
|
37 |
+
next_step = timestep
|
38 |
+
timestep = min(timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps, 999)
|
39 |
+
alpha_prod_t = self.scheduler.alphas_cumprod[timestep] if timestep >= 0 else self.scheduler.final_alpha_cumprod
|
40 |
+
alpha_prod_t_next = self.scheduler.alphas_cumprod[next_step]
|
41 |
+
beta_prod_t = 1 - alpha_prod_t
|
42 |
+
pred_x0 = (x - beta_prod_t**0.5 * model_output) / alpha_prod_t**0.5
|
43 |
+
pred_dir = (1 - alpha_prod_t_next)**0.5 * model_output
|
44 |
+
x_next = alpha_prod_t_next**0.5 * pred_x0 + pred_dir
|
45 |
+
return x_next, pred_x0
|
46 |
+
|
47 |
+
def step(
|
48 |
+
self,
|
49 |
+
model_output: torch.FloatTensor,
|
50 |
+
timestep: int,
|
51 |
+
x: torch.FloatTensor,
|
52 |
+
eta: float=0.0,
|
53 |
+
verbose=False,
|
54 |
+
):
|
55 |
+
"""
|
56 |
+
predict the sampe the next step in the denoise process.
|
57 |
+
"""
|
58 |
+
prev_timestep = timestep - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
|
59 |
+
alpha_prod_t = self.scheduler.alphas_cumprod[timestep]
|
60 |
+
alpha_prod_t_prev = self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep > 0 else self.scheduler.final_alpha_cumprod
|
61 |
+
beta_prod_t = 1 - alpha_prod_t
|
62 |
+
pred_x0 = (x - beta_prod_t**0.5 * model_output) / alpha_prod_t**0.5
|
63 |
+
pred_dir = (1 - alpha_prod_t_prev)**0.5 * model_output
|
64 |
+
x_prev = alpha_prod_t_prev**0.5 * pred_x0 + pred_dir
|
65 |
+
return x_prev, pred_x0
|
66 |
+
|
67 |
+
@torch.no_grad()
|
68 |
+
def image2latent(self, image):
|
69 |
+
DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
70 |
+
if type(image) is Image:
|
71 |
+
image = np.array(image)
|
72 |
+
image = torch.from_numpy(image).float() / 127.5 - 1
|
73 |
+
image = image.permute(2, 0, 1).unsqueeze(0).to(DEVICE)
|
74 |
+
# input image density range [-1, 1]
|
75 |
+
latents = self.vae.encode(image)['latent_dist'].mean
|
76 |
+
latents = latents * 0.18215
|
77 |
+
return latents
|
78 |
+
|
79 |
+
@torch.no_grad()
|
80 |
+
def latent2image(self, latents, return_type='np'):
|
81 |
+
latents = 1 / 0.18215 * latents.detach()
|
82 |
+
image = self.vae.decode(latents)['sample']
|
83 |
+
if return_type == 'np':
|
84 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
85 |
+
image = image.cpu().permute(0, 2, 3, 1).numpy()[0]
|
86 |
+
image = (image * 255).astype(np.uint8)
|
87 |
+
elif return_type == "pt":
|
88 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
89 |
+
|
90 |
+
return image
|
91 |
+
|
92 |
+
def latent2image_grad(self, latents):
|
93 |
+
latents = 1 / 0.18215 * latents
|
94 |
+
image = self.vae.decode(latents)['sample']
|
95 |
+
|
96 |
+
return image # range [-1, 1]
|
97 |
+
|
98 |
+
@torch.no_grad()
|
99 |
+
def __call__(
|
100 |
+
self,
|
101 |
+
prompt,
|
102 |
+
batch_size=1,
|
103 |
+
height=512,
|
104 |
+
width=512,
|
105 |
+
num_inference_steps=50,
|
106 |
+
guidance_scale=7.5,
|
107 |
+
eta=0.0,
|
108 |
+
latents=None,
|
109 |
+
unconditioning=None,
|
110 |
+
neg_prompt=None,
|
111 |
+
ref_intermediate_latents=None,
|
112 |
+
return_intermediates=False,
|
113 |
+
**kwds):
|
114 |
+
DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
115 |
+
if isinstance(prompt, list):
|
116 |
+
batch_size = len(prompt)
|
117 |
+
elif isinstance(prompt, str):
|
118 |
+
if batch_size > 1:
|
119 |
+
prompt = [prompt] * batch_size
|
120 |
+
|
121 |
+
# text embeddings
|
122 |
+
text_input = self.tokenizer(
|
123 |
+
prompt,
|
124 |
+
padding="max_length",
|
125 |
+
max_length=77,
|
126 |
+
return_tensors="pt"
|
127 |
+
)
|
128 |
+
|
129 |
+
text_embeddings = self.text_encoder(text_input.input_ids.to(DEVICE))[0]
|
130 |
+
print("input text embeddings :", text_embeddings.shape)
|
131 |
+
if kwds.get("dir"):
|
132 |
+
dir = text_embeddings[-2] - text_embeddings[-1]
|
133 |
+
u, s, v = torch.pca_lowrank(dir.transpose(-1, -2), q=1, center=True)
|
134 |
+
text_embeddings[-1] = text_embeddings[-1] + kwds.get("dir") * v
|
135 |
+
print(u.shape)
|
136 |
+
print(v.shape)
|
137 |
+
|
138 |
+
# define initial latents
|
139 |
+
latents_shape = (batch_size, self.unet.in_channels, height//8, width//8)
|
140 |
+
if latents is None:
|
141 |
+
latents = torch.randn(latents_shape, device=DEVICE)
|
142 |
+
else:
|
143 |
+
assert latents.shape == latents_shape, f"The shape of input latent tensor {latents.shape} should equal to predefined one."
|
144 |
+
|
145 |
+
# unconditional embedding for classifier free guidance
|
146 |
+
if guidance_scale > 1.:
|
147 |
+
max_length = text_input.input_ids.shape[-1]
|
148 |
+
if neg_prompt:
|
149 |
+
uc_text = neg_prompt
|
150 |
+
else:
|
151 |
+
uc_text = ""
|
152 |
+
# uc_text = "ugly, tiling, poorly drawn hands, poorly drawn feet, body out of frame, cut off, low contrast, underexposed, distorted face"
|
153 |
+
unconditional_input = self.tokenizer(
|
154 |
+
[uc_text] * batch_size,
|
155 |
+
padding="max_length",
|
156 |
+
max_length=77,
|
157 |
+
return_tensors="pt"
|
158 |
+
)
|
159 |
+
# unconditional_input.input_ids = unconditional_input.input_ids[:, 1:]
|
160 |
+
unconditional_embeddings = self.text_encoder(unconditional_input.input_ids.to(DEVICE))[0]
|
161 |
+
text_embeddings = torch.cat([unconditional_embeddings, text_embeddings], dim=0)
|
162 |
+
|
163 |
+
print("latents shape: ", latents.shape)
|
164 |
+
# iterative sampling
|
165 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
166 |
+
# print("Valid timesteps: ", reversed(self.scheduler.timesteps))
|
167 |
+
latents_list = [latents]
|
168 |
+
pred_x0_list = [latents]
|
169 |
+
for i, t in enumerate(tqdm(self.scheduler.timesteps, desc="DDIM Sampler")):
|
170 |
+
if ref_intermediate_latents is not None:
|
171 |
+
# note that the batch_size >= 2
|
172 |
+
latents_ref = ref_intermediate_latents[-1 - i]
|
173 |
+
_, latents_cur = latents.chunk(2)
|
174 |
+
latents = torch.cat([latents_ref, latents_cur])
|
175 |
+
|
176 |
+
if guidance_scale > 1.:
|
177 |
+
model_inputs = torch.cat([latents] * 2)
|
178 |
+
else:
|
179 |
+
model_inputs = latents
|
180 |
+
if unconditioning is not None and isinstance(unconditioning, list):
|
181 |
+
_, text_embeddings = text_embeddings.chunk(2)
|
182 |
+
text_embeddings = torch.cat([unconditioning[i].expand(*text_embeddings.shape), text_embeddings])
|
183 |
+
# predict tghe noise
|
184 |
+
noise_pred = self.unet(model_inputs, t, encoder_hidden_states=text_embeddings).sample
|
185 |
+
if guidance_scale > 1.:
|
186 |
+
noise_pred_uncon, noise_pred_con = noise_pred.chunk(2, dim=0)
|
187 |
+
noise_pred = noise_pred_uncon + guidance_scale * (noise_pred_con - noise_pred_uncon)
|
188 |
+
# compute the previous noise sample x_t -> x_t-1
|
189 |
+
latents, pred_x0 = self.step(noise_pred, t, latents)
|
190 |
+
latents_list.append(latents)
|
191 |
+
pred_x0_list.append(pred_x0)
|
192 |
+
|
193 |
+
image = self.latent2image(latents, return_type="pt")
|
194 |
+
if return_intermediates:
|
195 |
+
pred_x0_list = [self.latent2image(img, return_type="pt") for img in pred_x0_list]
|
196 |
+
latents_list = [self.latent2image(img, return_type="pt") for img in latents_list]
|
197 |
+
return image, pred_x0_list, latents_list
|
198 |
+
return image
|
199 |
+
|
200 |
+
@torch.no_grad()
|
201 |
+
def invert(
|
202 |
+
self,
|
203 |
+
image: torch.Tensor,
|
204 |
+
prompt,
|
205 |
+
num_inference_steps=50,
|
206 |
+
guidance_scale=7.5,
|
207 |
+
eta=0.0,
|
208 |
+
return_intermediates=False,
|
209 |
+
**kwds):
|
210 |
+
"""
|
211 |
+
invert a real image into noise map with determinisc DDIM inversion
|
212 |
+
"""
|
213 |
+
DEVICE = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
214 |
+
batch_size = image.shape[0]
|
215 |
+
if isinstance(prompt, list):
|
216 |
+
if batch_size == 1:
|
217 |
+
image = image.expand(len(prompt), -1, -1, -1)
|
218 |
+
elif isinstance(prompt, str):
|
219 |
+
if batch_size > 1:
|
220 |
+
prompt = [prompt] * batch_size
|
221 |
+
|
222 |
+
# text embeddings
|
223 |
+
text_input = self.tokenizer(
|
224 |
+
prompt,
|
225 |
+
padding="max_length",
|
226 |
+
max_length=77,
|
227 |
+
return_tensors="pt"
|
228 |
+
)
|
229 |
+
text_embeddings = self.text_encoder(text_input.input_ids.to(DEVICE))[0]
|
230 |
+
print("input text embeddings :", text_embeddings.shape)
|
231 |
+
# define initial latents
|
232 |
+
latents = self.image2latent(image)
|
233 |
+
start_latents = latents
|
234 |
+
# print(latents)
|
235 |
+
# exit()
|
236 |
+
# unconditional embedding for classifier free guidance
|
237 |
+
if guidance_scale > 1.:
|
238 |
+
max_length = text_input.input_ids.shape[-1]
|
239 |
+
unconditional_input = self.tokenizer(
|
240 |
+
[""] * batch_size,
|
241 |
+
padding="max_length",
|
242 |
+
max_length=77,
|
243 |
+
return_tensors="pt"
|
244 |
+
)
|
245 |
+
unconditional_embeddings = self.text_encoder(unconditional_input.input_ids.to(DEVICE))[0]
|
246 |
+
text_embeddings = torch.cat([unconditional_embeddings, text_embeddings], dim=0)
|
247 |
+
|
248 |
+
print("latents shape: ", latents.shape)
|
249 |
+
# interative sampling
|
250 |
+
self.scheduler.set_timesteps(num_inference_steps)
|
251 |
+
print("Valid timesteps: ", reversed(self.scheduler.timesteps))
|
252 |
+
# print("attributes: ", self.scheduler.__dict__)
|
253 |
+
latents_list = [latents]
|
254 |
+
pred_x0_list = [latents]
|
255 |
+
for i, t in enumerate(tqdm(reversed(self.scheduler.timesteps), desc="DDIM Inversion")):
|
256 |
+
if guidance_scale > 1.:
|
257 |
+
model_inputs = torch.cat([latents] * 2)
|
258 |
+
else:
|
259 |
+
model_inputs = latents
|
260 |
+
|
261 |
+
# predict the noise
|
262 |
+
noise_pred = self.unet(model_inputs, t, encoder_hidden_states=text_embeddings).sample
|
263 |
+
if guidance_scale > 1.:
|
264 |
+
noise_pred_uncon, noise_pred_con = noise_pred.chunk(2, dim=0)
|
265 |
+
noise_pred = noise_pred_uncon + guidance_scale * (noise_pred_con - noise_pred_uncon)
|
266 |
+
# compute the previous noise sample x_t-1 -> x_t
|
267 |
+
latents, pred_x0 = self.next_step(noise_pred, t, latents)
|
268 |
+
latents_list.append(latents)
|
269 |
+
pred_x0_list.append(pred_x0)
|
270 |
+
|
271 |
+
if return_intermediates:
|
272 |
+
# return the intermediate laters during inversion
|
273 |
+
# pred_x0_list = [self.latent2image(img, return_type="pt") for img in pred_x0_list]
|
274 |
+
return latents, latents_list
|
275 |
+
return latents, start_latents
|
masactrl/masactrl.py
ADDED
@@ -0,0 +1,280 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
|
3 |
+
import torch
|
4 |
+
import torch.nn.functional as F
|
5 |
+
import numpy as np
|
6 |
+
|
7 |
+
from einops import rearrange
|
8 |
+
|
9 |
+
from .masactrl_utils import AttentionBase
|
10 |
+
|
11 |
+
from torchvision.utils import save_image
|
12 |
+
|
13 |
+
|
14 |
+
class MutualSelfAttentionControl(AttentionBase):
|
15 |
+
def __init__(self, start_step=4, start_layer=10, layer_idx=None, step_idx=None, total_steps=50):
|
16 |
+
"""
|
17 |
+
Mutual self-attention control for Stable-Diffusion model
|
18 |
+
Args:
|
19 |
+
start_step: the step to start mutual self-attention control
|
20 |
+
start_layer: the layer to start mutual self-attention control
|
21 |
+
layer_idx: list of the layers to apply mutual self-attention control
|
22 |
+
step_idx: list the steps to apply mutual self-attention control
|
23 |
+
total_steps: the total number of steps
|
24 |
+
"""
|
25 |
+
super().__init__()
|
26 |
+
self.total_steps = total_steps
|
27 |
+
self.start_step = start_step
|
28 |
+
self.start_layer = start_layer
|
29 |
+
self.layer_idx = layer_idx if layer_idx is not None else list(range(start_layer, 16))
|
30 |
+
self.step_idx = step_idx if step_idx is not None else list(range(start_step, total_steps))
|
31 |
+
print("step_idx: ", self.step_idx)
|
32 |
+
print("layer_idx: ", self.layer_idx)
|
33 |
+
|
34 |
+
def attn_batch(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs):
|
35 |
+
b = q.shape[0] // num_heads
|
36 |
+
q = rearrange(q, "(b h) n d -> h (b n) d", h=num_heads)
|
37 |
+
k = rearrange(k, "(b h) n d -> h (b n) d", h=num_heads)
|
38 |
+
v = rearrange(v, "(b h) n d -> h (b n) d", h=num_heads)
|
39 |
+
|
40 |
+
sim = torch.einsum("h i d, h j d -> h i j", q, k) * kwargs.get("scale")
|
41 |
+
attn = sim.softmax(-1)
|
42 |
+
out = torch.einsum("h i j, h j d -> h i d", attn, v)
|
43 |
+
out = rearrange(out, "h (b n) d -> b n (h d)", b=b)
|
44 |
+
return out
|
45 |
+
|
46 |
+
def forward(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs):
|
47 |
+
"""
|
48 |
+
Attention forward function
|
49 |
+
"""
|
50 |
+
if is_cross or self.cur_step not in self.step_idx or self.cur_att_layer // 2 not in self.layer_idx:
|
51 |
+
return super().forward(q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs)
|
52 |
+
|
53 |
+
qu, qc = q.chunk(2)
|
54 |
+
ku, kc = k.chunk(2)
|
55 |
+
vu, vc = v.chunk(2)
|
56 |
+
attnu, attnc = attn.chunk(2)
|
57 |
+
|
58 |
+
out_u = self.attn_batch(qu, ku[:num_heads], vu[:num_heads], sim[:num_heads], attnu, is_cross, place_in_unet, num_heads, **kwargs)
|
59 |
+
out_c = self.attn_batch(qc, kc[:num_heads], vc[:num_heads], sim[:num_heads], attnc, is_cross, place_in_unet, num_heads, **kwargs)
|
60 |
+
out = torch.cat([out_u, out_c], dim=0)
|
61 |
+
|
62 |
+
return out
|
63 |
+
|
64 |
+
|
65 |
+
class MutualSelfAttentionControlMask(MutualSelfAttentionControl):
|
66 |
+
def __init__(self, start_step=4, start_layer=10, layer_idx=None, step_idx=None, total_steps=50, mask_s=None, mask_t=None, mask_save_dir=None):
|
67 |
+
"""
|
68 |
+
Maske-guided MasaCtrl to alleviate the problem of fore- and background confusion
|
69 |
+
Args:
|
70 |
+
start_step: the step to start mutual self-attention control
|
71 |
+
start_layer: the layer to start mutual self-attention control
|
72 |
+
layer_idx: list of the layers to apply mutual self-attention control
|
73 |
+
step_idx: list the steps to apply mutual self-attention control
|
74 |
+
total_steps: the total number of steps
|
75 |
+
mask_s: source mask with shape (h, w)
|
76 |
+
mask_t: target mask with same shape as source mask
|
77 |
+
"""
|
78 |
+
super().__init__(start_step, start_layer, layer_idx, step_idx, total_steps)
|
79 |
+
self.mask_s = mask_s # source mask with shape (h, w)
|
80 |
+
self.mask_t = mask_t # target mask with same shape as source mask
|
81 |
+
print("Using mask-guided MasaCtrl")
|
82 |
+
if mask_save_dir is not None:
|
83 |
+
os.makedirs(mask_save_dir, exist_ok=True)
|
84 |
+
save_image(self.mask_s.unsqueeze(0).unsqueeze(0), os.path.join(mask_save_dir, "mask_s.png"))
|
85 |
+
save_image(self.mask_t.unsqueeze(0).unsqueeze(0), os.path.join(mask_save_dir, "mask_t.png"))
|
86 |
+
|
87 |
+
def attn_batch(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs):
|
88 |
+
B = q.shape[0] // num_heads
|
89 |
+
H = W = int(np.sqrt(q.shape[1]))
|
90 |
+
q = rearrange(q, "(b h) n d -> h (b n) d", h=num_heads)
|
91 |
+
k = rearrange(k, "(b h) n d -> h (b n) d", h=num_heads)
|
92 |
+
v = rearrange(v, "(b h) n d -> h (b n) d", h=num_heads)
|
93 |
+
|
94 |
+
sim = torch.einsum("h i d, h j d -> h i j", q, k) * kwargs.get("scale")
|
95 |
+
if kwargs.get("is_mask_attn") and self.mask_s is not None:
|
96 |
+
print("masked attention")
|
97 |
+
mask = self.mask_s.unsqueeze(0).unsqueeze(0)
|
98 |
+
mask = F.interpolate(mask, (H, W)).flatten(0).unsqueeze(0)
|
99 |
+
mask = mask.flatten()
|
100 |
+
# background
|
101 |
+
sim_bg = sim + mask.masked_fill(mask == 1, torch.finfo(sim.dtype).min)
|
102 |
+
# object
|
103 |
+
sim_fg = sim + mask.masked_fill(mask == 0, torch.finfo(sim.dtype).min)
|
104 |
+
sim = torch.cat([sim_fg, sim_bg], dim=0)
|
105 |
+
attn = sim.softmax(-1)
|
106 |
+
if len(attn) == 2 * len(v):
|
107 |
+
v = torch.cat([v] * 2)
|
108 |
+
out = torch.einsum("h i j, h j d -> h i d", attn, v)
|
109 |
+
out = rearrange(out, "(h1 h) (b n) d -> (h1 b) n (h d)", b=B, h=num_heads)
|
110 |
+
return out
|
111 |
+
|
112 |
+
def forward(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs):
|
113 |
+
"""
|
114 |
+
Attention forward function
|
115 |
+
"""
|
116 |
+
if is_cross or self.cur_step not in self.step_idx or self.cur_att_layer // 2 not in self.layer_idx:
|
117 |
+
return super().forward(q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs)
|
118 |
+
|
119 |
+
B = q.shape[0] // num_heads // 2
|
120 |
+
H = W = int(np.sqrt(q.shape[1]))
|
121 |
+
qu, qc = q.chunk(2)
|
122 |
+
ku, kc = k.chunk(2)
|
123 |
+
vu, vc = v.chunk(2)
|
124 |
+
attnu, attnc = attn.chunk(2)
|
125 |
+
|
126 |
+
out_u_source = self.attn_batch(qu[:num_heads], ku[:num_heads], vu[:num_heads], sim[:num_heads], attnu, is_cross, place_in_unet, num_heads, **kwargs)
|
127 |
+
out_c_source = self.attn_batch(qc[:num_heads], kc[:num_heads], vc[:num_heads], sim[:num_heads], attnc, is_cross, place_in_unet, num_heads, **kwargs)
|
128 |
+
|
129 |
+
out_u_target = self.attn_batch(qu[-num_heads:], ku[:num_heads], vu[:num_heads], sim[:num_heads], attnu, is_cross, place_in_unet, num_heads, is_mask_attn=True, **kwargs)
|
130 |
+
out_c_target = self.attn_batch(qc[-num_heads:], kc[:num_heads], vc[:num_heads], sim[:num_heads], attnc, is_cross, place_in_unet, num_heads, is_mask_attn=True, **kwargs)
|
131 |
+
|
132 |
+
if self.mask_s is not None and self.mask_t is not None:
|
133 |
+
out_u_target_fg, out_u_target_bg = out_u_target.chunk(2, 0)
|
134 |
+
out_c_target_fg, out_c_target_bg = out_c_target.chunk(2, 0)
|
135 |
+
|
136 |
+
mask = F.interpolate(self.mask_t.unsqueeze(0).unsqueeze(0), (H, W))
|
137 |
+
mask = mask.reshape(-1, 1) # (hw, 1)
|
138 |
+
out_u_target = out_u_target_fg * mask + out_u_target_bg * (1 - mask)
|
139 |
+
out_c_target = out_c_target_fg * mask + out_c_target_bg * (1 - mask)
|
140 |
+
|
141 |
+
out = torch.cat([out_u_source, out_u_target, out_c_source, out_c_target], dim=0)
|
142 |
+
return out
|
143 |
+
|
144 |
+
|
145 |
+
class MutualSelfAttentionControlMaskAuto(MutualSelfAttentionControl):
|
146 |
+
def __init__(self, start_step=4, start_layer=10, layer_idx=None, step_idx=None, total_steps=50, thres=0.1, ref_token_idx=[1], cur_token_idx=[1], mask_save_dir=None):
|
147 |
+
"""
|
148 |
+
MasaCtrl with mask auto generation from cross-attention map
|
149 |
+
Args:
|
150 |
+
start_step: the step to start mutual self-attention control
|
151 |
+
start_layer: the layer to start mutual self-attention control
|
152 |
+
layer_idx: list of the layers to apply mutual self-attention control
|
153 |
+
step_idx: list the steps to apply mutual self-attention control
|
154 |
+
total_steps: the total number of steps
|
155 |
+
thres: the thereshold for mask thresholding
|
156 |
+
ref_token_idx: the token index list for cross-attention map aggregation
|
157 |
+
cur_token_idx: the token index list for cross-attention map aggregation
|
158 |
+
mask_save_dir: the path to save the mask image
|
159 |
+
"""
|
160 |
+
super().__init__(start_step, start_layer, layer_idx, step_idx, total_steps)
|
161 |
+
print("using MutualSelfAttentionControlMaskAuto")
|
162 |
+
self.thres = thres
|
163 |
+
self.ref_token_idx = ref_token_idx
|
164 |
+
self.cur_token_idx = cur_token_idx
|
165 |
+
|
166 |
+
self.self_attns = []
|
167 |
+
self.cross_attns = []
|
168 |
+
|
169 |
+
self.cross_attns_mask = None
|
170 |
+
self.self_attns_mask = None
|
171 |
+
|
172 |
+
self.mask_save_dir = mask_save_dir
|
173 |
+
if self.mask_save_dir is not None:
|
174 |
+
os.makedirs(self.mask_save_dir, exist_ok=True)
|
175 |
+
|
176 |
+
def after_step(self):
|
177 |
+
self.self_attns = []
|
178 |
+
self.cross_attns = []
|
179 |
+
|
180 |
+
def attn_batch(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs):
|
181 |
+
B = q.shape[0] // num_heads
|
182 |
+
H = W = int(np.sqrt(q.shape[1]))
|
183 |
+
q = rearrange(q, "(b h) n d -> h (b n) d", h=num_heads)
|
184 |
+
k = rearrange(k, "(b h) n d -> h (b n) d", h=num_heads)
|
185 |
+
v = rearrange(v, "(b h) n d -> h (b n) d", h=num_heads)
|
186 |
+
|
187 |
+
sim = torch.einsum("h i d, h j d -> h i j", q, k) * kwargs.get("scale")
|
188 |
+
if self.self_attns_mask is not None:
|
189 |
+
# binarize the mask
|
190 |
+
mask = self.self_attns_mask
|
191 |
+
thres = self.thres
|
192 |
+
mask[mask >= thres] = 1
|
193 |
+
mask[mask < thres] = 0
|
194 |
+
sim_fg = sim + mask.masked_fill(mask == 0, torch.finfo(sim.dtype).min)
|
195 |
+
sim_bg = sim + mask.masked_fill(mask == 1, torch.finfo(sim.dtype).min)
|
196 |
+
sim = torch.cat([sim_fg, sim_bg])
|
197 |
+
|
198 |
+
attn = sim.softmax(-1)
|
199 |
+
|
200 |
+
if len(attn) == 2 * len(v):
|
201 |
+
v = torch.cat([v] * 2)
|
202 |
+
out = torch.einsum("h i j, h j d -> h i d", attn, v)
|
203 |
+
out = rearrange(out, "(h1 h) (b n) d -> (h1 b) n (h d)", b=B, h=num_heads)
|
204 |
+
return out
|
205 |
+
|
206 |
+
def aggregate_cross_attn_map(self, idx):
|
207 |
+
attn_map = torch.stack(self.cross_attns, dim=1).mean(1) # (B, N, dim)
|
208 |
+
B = attn_map.shape[0]
|
209 |
+
res = int(np.sqrt(attn_map.shape[-2]))
|
210 |
+
attn_map = attn_map.reshape(-1, res, res, attn_map.shape[-1])
|
211 |
+
image = attn_map[..., idx]
|
212 |
+
if isinstance(idx, list):
|
213 |
+
image = image.sum(-1)
|
214 |
+
image_min = image.min(dim=1, keepdim=True)[0].min(dim=2, keepdim=True)[0]
|
215 |
+
image_max = image.max(dim=1, keepdim=True)[0].max(dim=2, keepdim=True)[0]
|
216 |
+
image = (image - image_min) / (image_max - image_min)
|
217 |
+
return image
|
218 |
+
|
219 |
+
def forward(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs):
|
220 |
+
"""
|
221 |
+
Attention forward function
|
222 |
+
"""
|
223 |
+
if is_cross:
|
224 |
+
# save cross attention map with res 16 * 16
|
225 |
+
if attn.shape[1] == 16 * 16:
|
226 |
+
self.cross_attns.append(attn.reshape(-1, num_heads, *attn.shape[-2:]).mean(1))
|
227 |
+
|
228 |
+
if is_cross or self.cur_step not in self.step_idx or self.cur_att_layer // 2 not in self.layer_idx:
|
229 |
+
return super().forward(q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs)
|
230 |
+
|
231 |
+
B = q.shape[0] // num_heads // 2
|
232 |
+
H = W = int(np.sqrt(q.shape[1]))
|
233 |
+
qu, qc = q.chunk(2)
|
234 |
+
ku, kc = k.chunk(2)
|
235 |
+
vu, vc = v.chunk(2)
|
236 |
+
attnu, attnc = attn.chunk(2)
|
237 |
+
|
238 |
+
out_u_source = self.attn_batch(qu[:num_heads], ku[:num_heads], vu[:num_heads], sim[:num_heads], attnu, is_cross, place_in_unet, num_heads, **kwargs)
|
239 |
+
out_c_source = self.attn_batch(qc[:num_heads], kc[:num_heads], vc[:num_heads], sim[:num_heads], attnc, is_cross, place_in_unet, num_heads, **kwargs)
|
240 |
+
|
241 |
+
if len(self.cross_attns) == 0:
|
242 |
+
self.self_attns_mask = None
|
243 |
+
out_u_target = self.attn_batch(qu[-num_heads:], ku[:num_heads], vu[:num_heads], sim[:num_heads], attnu, is_cross, place_in_unet, num_heads, **kwargs)
|
244 |
+
out_c_target = self.attn_batch(qc[-num_heads:], kc[:num_heads], vc[:num_heads], sim[:num_heads], attnc, is_cross, place_in_unet, num_heads, **kwargs)
|
245 |
+
else:
|
246 |
+
mask = self.aggregate_cross_attn_map(idx=self.ref_token_idx) # (2, H, W)
|
247 |
+
mask_source = mask[-2] # (H, W)
|
248 |
+
res = int(np.sqrt(q.shape[1]))
|
249 |
+
self.self_attns_mask = F.interpolate(mask_source.unsqueeze(0).unsqueeze(0), (res, res)).flatten()
|
250 |
+
if self.mask_save_dir is not None:
|
251 |
+
H = W = int(np.sqrt(self.self_attns_mask.shape[0]))
|
252 |
+
mask_image = self.self_attns_mask.reshape(H, W).unsqueeze(0)
|
253 |
+
save_image(mask_image, os.path.join(self.mask_save_dir, f"mask_s_{self.cur_step}_{self.cur_att_layer}.png"))
|
254 |
+
out_u_target = self.attn_batch(qu[-num_heads:], ku[:num_heads], vu[:num_heads], sim[:num_heads], attnu, is_cross, place_in_unet, num_heads, **kwargs)
|
255 |
+
out_c_target = self.attn_batch(qc[-num_heads:], kc[:num_heads], vc[:num_heads], sim[:num_heads], attnc, is_cross, place_in_unet, num_heads, **kwargs)
|
256 |
+
|
257 |
+
if self.self_attns_mask is not None:
|
258 |
+
mask = self.aggregate_cross_attn_map(idx=self.cur_token_idx) # (2, H, W)
|
259 |
+
mask_target = mask[-1] # (H, W)
|
260 |
+
res = int(np.sqrt(q.shape[1]))
|
261 |
+
spatial_mask = F.interpolate(mask_target.unsqueeze(0).unsqueeze(0), (res, res)).reshape(-1, 1)
|
262 |
+
if self.mask_save_dir is not None:
|
263 |
+
H = W = int(np.sqrt(spatial_mask.shape[0]))
|
264 |
+
mask_image = spatial_mask.reshape(H, W).unsqueeze(0)
|
265 |
+
save_image(mask_image, os.path.join(self.mask_save_dir, f"mask_t_{self.cur_step}_{self.cur_att_layer}.png"))
|
266 |
+
# binarize the mask
|
267 |
+
thres = self.thres
|
268 |
+
spatial_mask[spatial_mask >= thres] = 1
|
269 |
+
spatial_mask[spatial_mask < thres] = 0
|
270 |
+
out_u_target_fg, out_u_target_bg = out_u_target.chunk(2)
|
271 |
+
out_c_target_fg, out_c_target_bg = out_c_target.chunk(2)
|
272 |
+
|
273 |
+
out_u_target = out_u_target_fg * spatial_mask + out_u_target_bg * (1 - spatial_mask)
|
274 |
+
out_c_target = out_c_target_fg * spatial_mask + out_c_target_bg * (1 - spatial_mask)
|
275 |
+
|
276 |
+
# set self self-attention mask to None
|
277 |
+
self.self_attns_mask = None
|
278 |
+
|
279 |
+
out = torch.cat([out_u_source, out_u_target, out_c_source, out_c_target], dim=0)
|
280 |
+
return out
|
masactrl/masactrl_utils.py
ADDED
@@ -0,0 +1,212 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
|
8 |
+
from typing import Optional, Union, Tuple, List, Callable, Dict
|
9 |
+
|
10 |
+
from torchvision.utils import save_image
|
11 |
+
from einops import rearrange, repeat
|
12 |
+
|
13 |
+
|
14 |
+
class AttentionBase:
|
15 |
+
def __init__(self):
|
16 |
+
self.cur_step = 0
|
17 |
+
self.num_att_layers = -1
|
18 |
+
self.cur_att_layer = 0
|
19 |
+
|
20 |
+
def after_step(self):
|
21 |
+
pass
|
22 |
+
|
23 |
+
def __call__(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs):
|
24 |
+
out = self.forward(q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs)
|
25 |
+
self.cur_att_layer += 1
|
26 |
+
if self.cur_att_layer == self.num_att_layers:
|
27 |
+
self.cur_att_layer = 0
|
28 |
+
self.cur_step += 1
|
29 |
+
# after step
|
30 |
+
self.after_step()
|
31 |
+
return out
|
32 |
+
|
33 |
+
def forward(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs):
|
34 |
+
out = torch.einsum('b i j, b j d -> b i d', attn, v)
|
35 |
+
out = rearrange(out, '(b h) n d -> b n (h d)', h=num_heads)
|
36 |
+
return out
|
37 |
+
|
38 |
+
def reset(self):
|
39 |
+
self.cur_step = 0
|
40 |
+
self.cur_att_layer = 0
|
41 |
+
|
42 |
+
|
43 |
+
class AttentionStore(AttentionBase):
|
44 |
+
def __init__(self, res=[32], min_step=0, max_step=1000):
|
45 |
+
super().__init__()
|
46 |
+
self.res = res
|
47 |
+
self.min_step = min_step
|
48 |
+
self.max_step = max_step
|
49 |
+
self.valid_steps = 0
|
50 |
+
|
51 |
+
self.self_attns = [] # store the all attns
|
52 |
+
self.cross_attns = []
|
53 |
+
|
54 |
+
self.self_attns_step = [] # store the attns in each step
|
55 |
+
self.cross_attns_step = []
|
56 |
+
|
57 |
+
def after_step(self):
|
58 |
+
if self.cur_step > self.min_step and self.cur_step < self.max_step:
|
59 |
+
self.valid_steps += 1
|
60 |
+
if len(self.self_attns) == 0:
|
61 |
+
self.self_attns = self.self_attns_step
|
62 |
+
self.cross_attns = self.cross_attns_step
|
63 |
+
else:
|
64 |
+
for i in range(len(self.self_attns)):
|
65 |
+
self.self_attns[i] += self.self_attns_step[i]
|
66 |
+
self.cross_attns[i] += self.cross_attns_step[i]
|
67 |
+
self.self_attns_step.clear()
|
68 |
+
self.cross_attns_step.clear()
|
69 |
+
|
70 |
+
def forward(self, q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs):
|
71 |
+
if attn.shape[1] <= 64 ** 2: # avoid OOM
|
72 |
+
if is_cross:
|
73 |
+
self.cross_attns_step.append(attn)
|
74 |
+
else:
|
75 |
+
self.self_attns_step.append(attn)
|
76 |
+
return super().forward(q, k, v, sim, attn, is_cross, place_in_unet, num_heads, **kwargs)
|
77 |
+
|
78 |
+
|
79 |
+
def regiter_attention_editor_diffusers(model, editor: AttentionBase):
|
80 |
+
"""
|
81 |
+
Register a attention editor to Diffuser Pipeline, refer from [Prompt-to-Prompt]
|
82 |
+
"""
|
83 |
+
def ca_forward(self, place_in_unet):
|
84 |
+
def forward(x, encoder_hidden_states=None, attention_mask=None, context=None, mask=None):
|
85 |
+
"""
|
86 |
+
The attention is similar to the original implementation of LDM CrossAttention class
|
87 |
+
except adding some modifications on the attention
|
88 |
+
"""
|
89 |
+
if encoder_hidden_states is not None:
|
90 |
+
context = encoder_hidden_states
|
91 |
+
if attention_mask is not None:
|
92 |
+
mask = attention_mask
|
93 |
+
|
94 |
+
to_out = self.to_out
|
95 |
+
if isinstance(to_out, nn.modules.container.ModuleList):
|
96 |
+
to_out = self.to_out[0]
|
97 |
+
else:
|
98 |
+
to_out = self.to_out
|
99 |
+
|
100 |
+
h = self.heads
|
101 |
+
q = self.to_q(x)
|
102 |
+
is_cross = context is not None
|
103 |
+
context = context if is_cross else x
|
104 |
+
k = self.to_k(context)
|
105 |
+
v = self.to_v(context)
|
106 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
107 |
+
|
108 |
+
sim = torch.einsum('b i d, b j d -> b i j', q, k) * self.scale
|
109 |
+
|
110 |
+
if mask is not None:
|
111 |
+
mask = rearrange(mask, 'b ... -> b (...)')
|
112 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
113 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
114 |
+
mask = mask[:, None, :].repeat(h, 1, 1)
|
115 |
+
sim.masked_fill_(~mask, max_neg_value)
|
116 |
+
|
117 |
+
attn = sim.softmax(dim=-1)
|
118 |
+
# the only difference
|
119 |
+
out = editor(
|
120 |
+
q, k, v, sim, attn, is_cross, place_in_unet,
|
121 |
+
self.heads, scale=self.scale)
|
122 |
+
|
123 |
+
return to_out(out)
|
124 |
+
|
125 |
+
return forward
|
126 |
+
|
127 |
+
def register_editor(net, count, place_in_unet):
|
128 |
+
for name, subnet in net.named_children():
|
129 |
+
if net.__class__.__name__ == 'Attention': # spatial Transformer layer
|
130 |
+
net.forward = ca_forward(net, place_in_unet)
|
131 |
+
return count + 1
|
132 |
+
elif hasattr(net, 'children'):
|
133 |
+
count = register_editor(subnet, count, place_in_unet)
|
134 |
+
return count
|
135 |
+
|
136 |
+
cross_att_count = 0
|
137 |
+
for net_name, net in model.unet.named_children():
|
138 |
+
if "down" in net_name:
|
139 |
+
cross_att_count += register_editor(net, 0, "down")
|
140 |
+
elif "mid" in net_name:
|
141 |
+
cross_att_count += register_editor(net, 0, "mid")
|
142 |
+
elif "up" in net_name:
|
143 |
+
cross_att_count += register_editor(net, 0, "up")
|
144 |
+
editor.num_att_layers = cross_att_count
|
145 |
+
|
146 |
+
|
147 |
+
def regiter_attention_editor_ldm(model, editor: AttentionBase):
|
148 |
+
"""
|
149 |
+
Register a attention editor to Stable Diffusion model, refer from [Prompt-to-Prompt]
|
150 |
+
"""
|
151 |
+
def ca_forward(self, place_in_unet):
|
152 |
+
def forward(x, encoder_hidden_states=None, attention_mask=None, context=None, mask=None):
|
153 |
+
"""
|
154 |
+
The attention is similar to the original implementation of LDM CrossAttention class
|
155 |
+
except adding some modifications on the attention
|
156 |
+
"""
|
157 |
+
if encoder_hidden_states is not None:
|
158 |
+
context = encoder_hidden_states
|
159 |
+
if attention_mask is not None:
|
160 |
+
mask = attention_mask
|
161 |
+
|
162 |
+
to_out = self.to_out
|
163 |
+
if isinstance(to_out, nn.modules.container.ModuleList):
|
164 |
+
to_out = self.to_out[0]
|
165 |
+
else:
|
166 |
+
to_out = self.to_out
|
167 |
+
|
168 |
+
h = self.heads
|
169 |
+
q = self.to_q(x)
|
170 |
+
is_cross = context is not None
|
171 |
+
context = context if is_cross else x
|
172 |
+
k = self.to_k(context)
|
173 |
+
v = self.to_v(context)
|
174 |
+
q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v))
|
175 |
+
|
176 |
+
sim = torch.einsum('b i d, b j d -> b i j', q, k) * self.scale
|
177 |
+
|
178 |
+
if mask is not None:
|
179 |
+
mask = rearrange(mask, 'b ... -> b (...)')
|
180 |
+
max_neg_value = -torch.finfo(sim.dtype).max
|
181 |
+
mask = repeat(mask, 'b j -> (b h) () j', h=h)
|
182 |
+
mask = mask[:, None, :].repeat(h, 1, 1)
|
183 |
+
sim.masked_fill_(~mask, max_neg_value)
|
184 |
+
|
185 |
+
attn = sim.softmax(dim=-1)
|
186 |
+
# the only difference
|
187 |
+
out = editor(
|
188 |
+
q, k, v, sim, attn, is_cross, place_in_unet,
|
189 |
+
self.heads, scale=self.scale)
|
190 |
+
|
191 |
+
return to_out(out)
|
192 |
+
|
193 |
+
return forward
|
194 |
+
|
195 |
+
def register_editor(net, count, place_in_unet):
|
196 |
+
for name, subnet in net.named_children():
|
197 |
+
if net.__class__.__name__ == 'CrossAttention': # spatial Transformer layer
|
198 |
+
net.forward = ca_forward(net, place_in_unet)
|
199 |
+
return count + 1
|
200 |
+
elif hasattr(net, 'children'):
|
201 |
+
count = register_editor(subnet, count, place_in_unet)
|
202 |
+
return count
|
203 |
+
|
204 |
+
cross_att_count = 0
|
205 |
+
for net_name, net in model.model.diffusion_model.named_children():
|
206 |
+
if "input" in net_name:
|
207 |
+
cross_att_count += register_editor(net, 0, "input")
|
208 |
+
elif "middle" in net_name:
|
209 |
+
cross_att_count += register_editor(net, 0, "middle")
|
210 |
+
elif "output" in net_name:
|
211 |
+
cross_att_count += register_editor(net, 0, "output")
|
212 |
+
editor.num_att_layers = cross_att_count
|
playground.ipynb
ADDED
@@ -0,0 +1,149 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"### MasaCtrl: Tuning-free Mutual Self-Attention Control for Consistent Image Synthesis and Editing"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": null,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [],
|
15 |
+
"source": [
|
16 |
+
"import os\n",
|
17 |
+
"import torch\n",
|
18 |
+
"import torch.nn as nn\n",
|
19 |
+
"import torch.nn.functional as F\n",
|
20 |
+
"\n",
|
21 |
+
"import numpy as np\n",
|
22 |
+
"\n",
|
23 |
+
"from tqdm import tqdm\n",
|
24 |
+
"from einops import rearrange, repeat\n",
|
25 |
+
"from omegaconf import OmegaConf\n",
|
26 |
+
"\n",
|
27 |
+
"from diffusers import DDIMScheduler\n",
|
28 |
+
"\n",
|
29 |
+
"from masactrl.diffuser_utils import MasaCtrlPipeline\n",
|
30 |
+
"from masactrl.masactrl_utils import AttentionBase\n",
|
31 |
+
"from masactrl.masactrl_utils import regiter_attention_editor_diffusers\n",
|
32 |
+
"\n",
|
33 |
+
"from torchvision.utils import save_image\n",
|
34 |
+
"from torchvision.io import read_image\n",
|
35 |
+
"from pytorch_lightning import seed_everything\n",
|
36 |
+
"\n",
|
37 |
+
"torch.cuda.set_device(6) # set the GPU device"
|
38 |
+
]
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"cell_type": "markdown",
|
42 |
+
"metadata": {},
|
43 |
+
"source": [
|
44 |
+
"#### Model Construction"
|
45 |
+
]
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"cell_type": "code",
|
49 |
+
"execution_count": null,
|
50 |
+
"metadata": {},
|
51 |
+
"outputs": [],
|
52 |
+
"source": [
|
53 |
+
"# Note that you may add your Hugging Face token to get access to the models\n",
|
54 |
+
"device = torch.device(\"cuda\") if torch.cuda.is_available() else torch.device(\"cpu\")\n",
|
55 |
+
"model_path = \"andite/anything-v4.0\"\n",
|
56 |
+
"# model_path = \"runwayml/stable-diffusion-v1-5\"\n",
|
57 |
+
"scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule=\"scaled_linear\", clip_sample=False, set_alpha_to_one=False)\n",
|
58 |
+
"model = MasaCtrlPipeline.from_pretrained(model_path, scheduler=scheduler, cross_attention_kwargs={\"scale\": 0.5}).to(device)"
|
59 |
+
]
|
60 |
+
},
|
61 |
+
{
|
62 |
+
"cell_type": "markdown",
|
63 |
+
"metadata": {},
|
64 |
+
"source": [
|
65 |
+
"#### Consistent synthesis with MasaCtrl"
|
66 |
+
]
|
67 |
+
},
|
68 |
+
{
|
69 |
+
"cell_type": "code",
|
70 |
+
"execution_count": null,
|
71 |
+
"metadata": {},
|
72 |
+
"outputs": [],
|
73 |
+
"source": [
|
74 |
+
"from masactrl.masactrl import MutualSelfAttentionControl\n",
|
75 |
+
"\n",
|
76 |
+
"\n",
|
77 |
+
"seed = 42\n",
|
78 |
+
"seed_everything(seed)\n",
|
79 |
+
"\n",
|
80 |
+
"out_dir = \"./workdir/masactrl_exp/\"\n",
|
81 |
+
"os.makedirs(out_dir, exist_ok=True)\n",
|
82 |
+
"sample_count = len(os.listdir(out_dir))\n",
|
83 |
+
"out_dir = os.path.join(out_dir, f\"sample_{sample_count}\")\n",
|
84 |
+
"os.makedirs(out_dir, exist_ok=True)\n",
|
85 |
+
"\n",
|
86 |
+
"prompts = [\n",
|
87 |
+
" \"1boy, casual, outdoors, sitting\", # source prompt\n",
|
88 |
+
" \"1boy, casual, outdoors, standing\" # target prompt\n",
|
89 |
+
"]\n",
|
90 |
+
"\n",
|
91 |
+
"# initialize the noise map\n",
|
92 |
+
"start_code = torch.randn([1, 4, 64, 64], device=device)\n",
|
93 |
+
"start_code = start_code.expand(len(prompts), -1, -1, -1)\n",
|
94 |
+
"\n",
|
95 |
+
"# inference the synthesized image without MasaCtrl\n",
|
96 |
+
"editor = AttentionBase()\n",
|
97 |
+
"regiter_attention_editor_diffusers(model, editor)\n",
|
98 |
+
"image_ori = model(prompts, latents=start_code, guidance_scale=7.5)\n",
|
99 |
+
"\n",
|
100 |
+
"# inference the synthesized image with MasaCtrl\n",
|
101 |
+
"STEP = 4\n",
|
102 |
+
"LAYPER = 10\n",
|
103 |
+
"\n",
|
104 |
+
"# hijack the attention module\n",
|
105 |
+
"editor = MutualSelfAttentionControl(STEP, LAYPER)\n",
|
106 |
+
"regiter_attention_editor_diffusers(model, editor)\n",
|
107 |
+
"\n",
|
108 |
+
"# inference the synthesized image\n",
|
109 |
+
"image_masactrl = model(prompts, latents=start_code, guidance_scale=7.5)[-1:]\n",
|
110 |
+
"\n",
|
111 |
+
"# save the synthesized image\n",
|
112 |
+
"out_image = torch.cat([image_ori, image_masactrl], dim=0)\n",
|
113 |
+
"save_image(out_image, os.path.join(out_dir, f\"all_step{STEP}_layer{LAYPER}.png\"))\n",
|
114 |
+
"save_image(out_image[0], os.path.join(out_dir, f\"source_step{STEP}_layer{LAYPER}.png\"))\n",
|
115 |
+
"save_image(out_image[1], os.path.join(out_dir, f\"without_step{STEP}_layer{LAYPER}.png\"))\n",
|
116 |
+
"save_image(out_image[2], os.path.join(out_dir, f\"masactrl_step{STEP}_layer{LAYPER}.png\"))\n",
|
117 |
+
"\n",
|
118 |
+
"print(\"Syntheiszed images are saved in\", out_dir)"
|
119 |
+
]
|
120 |
+
}
|
121 |
+
],
|
122 |
+
"metadata": {
|
123 |
+
"kernelspec": {
|
124 |
+
"display_name": "Python 3.8.5 ('ldm')",
|
125 |
+
"language": "python",
|
126 |
+
"name": "python3"
|
127 |
+
},
|
128 |
+
"language_info": {
|
129 |
+
"codemirror_mode": {
|
130 |
+
"name": "ipython",
|
131 |
+
"version": 3
|
132 |
+
},
|
133 |
+
"file_extension": ".py",
|
134 |
+
"mimetype": "text/x-python",
|
135 |
+
"name": "python",
|
136 |
+
"nbconvert_exporter": "python",
|
137 |
+
"pygments_lexer": "ipython3",
|
138 |
+
"version": "3.8.5"
|
139 |
+
},
|
140 |
+
"orig_nbformat": 4,
|
141 |
+
"vscode": {
|
142 |
+
"interpreter": {
|
143 |
+
"hash": "587aa04bacead72c1ffd459abbe4c8140b72ba2b534b24165b36a2ede3d95042"
|
144 |
+
}
|
145 |
+
}
|
146 |
+
},
|
147 |
+
"nbformat": 4,
|
148 |
+
"nbformat_minor": 2
|
149 |
+
}
|
playground_real.ipynb
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "markdown",
|
5 |
+
"metadata": {},
|
6 |
+
"source": [
|
7 |
+
"### MasaCtrl: Tuning-free Mutual Self-Attention Control for Consistent Image Synthesis and Editing"
|
8 |
+
]
|
9 |
+
},
|
10 |
+
{
|
11 |
+
"cell_type": "code",
|
12 |
+
"execution_count": null,
|
13 |
+
"metadata": {},
|
14 |
+
"outputs": [],
|
15 |
+
"source": [
|
16 |
+
"import os\n",
|
17 |
+
"import torch\n",
|
18 |
+
"import torch.nn as nn\n",
|
19 |
+
"import torch.nn.functional as F\n",
|
20 |
+
"\n",
|
21 |
+
"import numpy as np\n",
|
22 |
+
"\n",
|
23 |
+
"from tqdm import tqdm\n",
|
24 |
+
"from einops import rearrange, repeat\n",
|
25 |
+
"from omegaconf import OmegaConf\n",
|
26 |
+
"\n",
|
27 |
+
"from diffusers import DDIMScheduler\n",
|
28 |
+
"\n",
|
29 |
+
"from masactrl.diffuser_utils import MasaCtrlPipeline\n",
|
30 |
+
"from masactrl.masactrl_utils import AttentionBase\n",
|
31 |
+
"from masactrl.masactrl_utils import regiter_attention_editor_diffusers\n",
|
32 |
+
"\n",
|
33 |
+
"from torchvision.utils import save_image\n",
|
34 |
+
"from torchvision.io import read_image\n",
|
35 |
+
"from pytorch_lightning import seed_everything\n",
|
36 |
+
"\n",
|
37 |
+
"torch.cuda.set_device(6) # set the GPU device"
|
38 |
+
]
|
39 |
+
},
|
40 |
+
{
|
41 |
+
"cell_type": "markdown",
|
42 |
+
"metadata": {},
|
43 |
+
"source": [
|
44 |
+
"#### Model Construction"
|
45 |
+
]
|
46 |
+
},
|
47 |
+
{
|
48 |
+
"cell_type": "code",
|
49 |
+
"execution_count": null,
|
50 |
+
"metadata": {},
|
51 |
+
"outputs": [],
|
52 |
+
"source": [
|
53 |
+
"# Note that you may add your Hugging Face token to get access to the models\n",
|
54 |
+
"device = torch.device(\"cuda\") if torch.cuda.is_available() else torch.device(\"cpu\")\n",
|
55 |
+
"# model_path = \"andite/anything-v4.0\"\n",
|
56 |
+
"model_path = \"CompVis/stable-diffusion-v1-4\"\n",
|
57 |
+
"# model_path = \"runwayml/stable-diffusion-v1-5\"\n",
|
58 |
+
"scheduler = DDIMScheduler(beta_start=0.00085, beta_end=0.012, beta_schedule=\"scaled_linear\", clip_sample=False, set_alpha_to_one=False)\n",
|
59 |
+
"model = MasaCtrlPipeline.from_pretrained(model_path, scheduler=scheduler).to(device)"
|
60 |
+
]
|
61 |
+
},
|
62 |
+
{
|
63 |
+
"cell_type": "markdown",
|
64 |
+
"metadata": {},
|
65 |
+
"source": [
|
66 |
+
"#### Real editing with MasaCtrl"
|
67 |
+
]
|
68 |
+
},
|
69 |
+
{
|
70 |
+
"cell_type": "code",
|
71 |
+
"execution_count": null,
|
72 |
+
"metadata": {},
|
73 |
+
"outputs": [],
|
74 |
+
"source": [
|
75 |
+
"from masactrl.masactrl import MutualSelfAttentionControl\n",
|
76 |
+
"from torchvision.io import read_image\n",
|
77 |
+
"\n",
|
78 |
+
"\n",
|
79 |
+
"def load_image(image_path, device):\n",
|
80 |
+
" image = read_image(image_path)\n",
|
81 |
+
" image = image[:3].unsqueeze_(0).float() / 127.5 - 1. # [-1, 1]\n",
|
82 |
+
" image = F.interpolate(image, (512, 512))\n",
|
83 |
+
" image = image.to(device)\n",
|
84 |
+
" return image\n",
|
85 |
+
"\n",
|
86 |
+
"\n",
|
87 |
+
"seed = 42\n",
|
88 |
+
"seed_everything(seed)\n",
|
89 |
+
"\n",
|
90 |
+
"out_dir = \"./workdir/masactrl_real_exp/\"\n",
|
91 |
+
"os.makedirs(out_dir, exist_ok=True)\n",
|
92 |
+
"sample_count = len(os.listdir(out_dir))\n",
|
93 |
+
"out_dir = os.path.join(out_dir, f\"sample_{sample_count}\")\n",
|
94 |
+
"os.makedirs(out_dir, exist_ok=True)\n",
|
95 |
+
"\n",
|
96 |
+
"# source image\n",
|
97 |
+
"SOURCE_IMAGE_PATH = \"./gradio_app/images/corgi.jpg\"\n",
|
98 |
+
"source_image = load_image(SOURCE_IMAGE_PATH, device)\n",
|
99 |
+
"\n",
|
100 |
+
"source_prompt = \"\"\n",
|
101 |
+
"target_prompt = \"a photo of a running corgi\"\n",
|
102 |
+
"prompts = [source_prompt, target_prompt]\n",
|
103 |
+
"\n",
|
104 |
+
"# invert the source image\n",
|
105 |
+
"start_code, latents_list = model.invert(source_image,\n",
|
106 |
+
" source_prompt,\n",
|
107 |
+
" guidance_scale=7.5,\n",
|
108 |
+
" num_inference_steps=50,\n",
|
109 |
+
" return_intermediates=True)\n",
|
110 |
+
"start_code = start_code.expand(len(prompts), -1, -1, -1)\n",
|
111 |
+
"\n",
|
112 |
+
"# results of direct synthesis\n",
|
113 |
+
"editor = AttentionBase()\n",
|
114 |
+
"regiter_attention_editor_diffusers(model, editor)\n",
|
115 |
+
"image_fixed = model([target_prompt],\n",
|
116 |
+
" latents=start_code[-1:],\n",
|
117 |
+
" num_inference_steps=50,\n",
|
118 |
+
" guidance_scale=7.5)\n",
|
119 |
+
"\n",
|
120 |
+
"# inference the synthesized image with MasaCtrl\n",
|
121 |
+
"STEP = 4\n",
|
122 |
+
"LAYPER = 10\n",
|
123 |
+
"\n",
|
124 |
+
"# hijack the attention module\n",
|
125 |
+
"editor = MutualSelfAttentionControl(STEP, LAYPER)\n",
|
126 |
+
"regiter_attention_editor_diffusers(model, editor)\n",
|
127 |
+
"\n",
|
128 |
+
"# inference the synthesized image\n",
|
129 |
+
"image_masactrl = model(prompts,\n",
|
130 |
+
" latents=start_code,\n",
|
131 |
+
" guidance_scale=7.5)\n",
|
132 |
+
"# Note: querying the inversion intermediate features latents_list\n",
|
133 |
+
"# may obtain better reconstruction and editing results\n",
|
134 |
+
"# image_masactrl = model(prompts,\n",
|
135 |
+
"# latents=start_code,\n",
|
136 |
+
"# guidance_scale=7.5,\n",
|
137 |
+
"# ref_intermediate_latents=latents_list)\n",
|
138 |
+
"\n",
|
139 |
+
"# save the synthesized image\n",
|
140 |
+
"out_image = torch.cat([source_image * 0.5 + 0.5,\n",
|
141 |
+
" image_masactrl[0:1],\n",
|
142 |
+
" image_fixed,\n",
|
143 |
+
" image_masactrl[-1:]], dim=0)\n",
|
144 |
+
"save_image(out_image, os.path.join(out_dir, f\"all_step{STEP}_layer{LAYPER}.png\"))\n",
|
145 |
+
"save_image(out_image[0], os.path.join(out_dir, f\"source_step{STEP}_layer{LAYPER}.png\"))\n",
|
146 |
+
"save_image(out_image[1], os.path.join(out_dir, f\"reconstructed_source_step{STEP}_layer{LAYPER}.png\"))\n",
|
147 |
+
"save_image(out_image[2], os.path.join(out_dir, f\"without_step{STEP}_layer{LAYPER}.png\"))\n",
|
148 |
+
"save_image(out_image[3], os.path.join(out_dir, f\"masactrl_step{STEP}_layer{LAYPER}.png\"))\n",
|
149 |
+
"\n",
|
150 |
+
"print(\"Syntheiszed images are saved in\", out_dir)"
|
151 |
+
]
|
152 |
+
},
|
153 |
+
{
|
154 |
+
"cell_type": "code",
|
155 |
+
"execution_count": null,
|
156 |
+
"metadata": {},
|
157 |
+
"outputs": [],
|
158 |
+
"source": []
|
159 |
+
}
|
160 |
+
],
|
161 |
+
"metadata": {
|
162 |
+
"kernelspec": {
|
163 |
+
"display_name": "Python 3.8.5 ('ldm')",
|
164 |
+
"language": "python",
|
165 |
+
"name": "python3"
|
166 |
+
},
|
167 |
+
"language_info": {
|
168 |
+
"codemirror_mode": {
|
169 |
+
"name": "ipython",
|
170 |
+
"version": 3
|
171 |
+
},
|
172 |
+
"file_extension": ".py",
|
173 |
+
"mimetype": "text/x-python",
|
174 |
+
"name": "python",
|
175 |
+
"nbconvert_exporter": "python",
|
176 |
+
"pygments_lexer": "ipython3",
|
177 |
+
"version": "3.8.5"
|
178 |
+
},
|
179 |
+
"orig_nbformat": 4,
|
180 |
+
"vscode": {
|
181 |
+
"interpreter": {
|
182 |
+
"hash": "587aa04bacead72c1ffd459abbe4c8140b72ba2b534b24165b36a2ede3d95042"
|
183 |
+
}
|
184 |
+
}
|
185 |
+
},
|
186 |
+
"nbformat": 4,
|
187 |
+
"nbformat_minor": 2
|
188 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
diffusers==0.15.0
|
2 |
+
transformers
|
3 |
+
opencv-python
|
style.css
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
h1 {
|
2 |
+
text-align: center;
|
3 |
+
}
|