import hydra
from omegaconf import OmegaConf
import torch
import os
import re
import pyrootutils
from PIL import Image, ImageDraw, ImageFont
import json
from diffusers import AutoencoderKL, DDPMScheduler, UNet2DConditionModel, EulerDiscreteScheduler
import matplotlib.pyplot as plt
import numpy as np
from collections import Counter
import time
pyrootutils.setup_root(__file__, indicator='.project-root', pythonpath=True)
BOI_TOKEN = ''
EOI_TOKEN = ''
IMG_TOKEN = ''
device = 'cuda:0'
dtype = torch.float16
dtype_str = 'fp16'
num_img_in_tokens = 64
num_img_out_tokens = 64
instruction_prompt = '{instruction}'
tokenizer_cfg_path = 'configs/tokenizer/clm_llama_tokenizer.yaml'
image_transform_cfg_path = 'configs/processer/qwen_448_transform.yaml'
visual_encoder_cfg_path = 'configs/visual_tokenizer/qwen_vitg_448.yaml'
llm_cfg_path = 'configs/clm_models/llama2chat7b_lora.yaml'
agent_cfg_path = 'configs/clm_models/agent_7b_sft.yaml'
adapter_cfg_path = 'configs/detokenizer/detokenizer_sdxl_qwen_vit_adapted.yaml'
discrete_model_cfg_path = 'configs/discrete_model/discrete_identity.yaml'
diffusion_model_path = 'pretrained/stable-diffusion-xl-base-1.0'
save_dir = "output"
cache_mode = 'img_head_tail'
# init
tokenizer_cfg = OmegaConf.load(tokenizer_cfg_path)
tokenizer = hydra.utils.instantiate(tokenizer_cfg)
image_transform_cfg = OmegaConf.load(image_transform_cfg_path)
image_transform = hydra.utils.instantiate(image_transform_cfg)
visual_encoder_cfg = OmegaConf.load(visual_encoder_cfg_path)
visual_encoder = hydra.utils.instantiate(visual_encoder_cfg)
visual_encoder.eval().to(device, dtype=dtype)
print('Init visual encoder done')
llm_cfg = OmegaConf.load(llm_cfg_path)
llm = hydra.utils.instantiate(llm_cfg, torch_dtype=dtype_str)
print('Init llm done.')
agent_model_cfg = OmegaConf.load(agent_cfg_path)
agent_model = hydra.utils.instantiate(agent_model_cfg, llm=llm)
agent_model.eval().to(device, dtype=dtype)
print('Init agent model Done')
noise_scheduler = EulerDiscreteScheduler.from_pretrained(diffusion_model_path, subfolder="scheduler")
print('init vae')
vae = AutoencoderKL.from_pretrained(diffusion_model_path, subfolder="vae").to(device, dtype=dtype)
print('init unet')
unet = UNet2DConditionModel.from_pretrained(diffusion_model_path, subfolder="unet").to(device, dtype=dtype)
adapter_cfg = OmegaConf.load(adapter_cfg_path)
adapter = hydra.utils.instantiate(adapter_cfg, unet=unet).to(device, dtype=dtype).eval()
print('Init adapter done')
discrete_model_cfg = OmegaConf.load(discrete_model_cfg_path)
discrete_model = hydra.utils.instantiate(discrete_model_cfg).to(device).eval()
print('Init discrete model done')
adapter.init_pipe(vae=vae,
scheduler=noise_scheduler,
visual_encoder=visual_encoder,
image_transform=image_transform,
discrete_model=discrete_model,
dtype=dtype,
device=device)
print('Init adapter pipe done')
boi_token_id = tokenizer.encode(BOI_TOKEN, add_special_tokens=False)[0]
eoi_token_id = tokenizer.encode(EOI_TOKEN, add_special_tokens=False)[0]
def read_jsonl_to_dict(filename):
data = []
with open(filename, 'r') as file:
for line in file:
# Each line is a valid JSON object
json_object = json.loads(line)
data.append(json_object)
return data
# data
filename = 'data/json/val.jsonl'
image_root = 'data/image/george_full'
data = read_jsonl_to_dict(filename)
image_paths = [
os.path.join(image_root, d['images'][0]) for d in data
]
starting_texts = [
d['captions'][0] for d in data
]
texts = [
d['captions'][1:] for d in data
]
def add_subtitle(original_image, text):
# Calculate the size of the new image
text_height = 80 # Height of the black bar for the text
new_image_size = (original_image.width, original_image.height + text_height)
# Create a new image with a black background
new_image = Image.new("RGB", new_image_size, "black")
# Paste the original image onto the new image
new_image.paste(original_image, (0, 0))
# Prepare the new image for drawing
draw = ImageDraw.Draw(new_image)
# Specify the font size and font path
font_size = 14 # Adjust font size as needed
# font = ImageFont.truetype(font_path, font_size)
# Manually split the text into two lines
line1, line2 = text[:len(text) // 2], text[len(text) // 2:]
# Update the position for the first line of text to ensure both lines are centered vertically
text_position_line1 = (10, original_image.height + (text_height - font_size) // 2)
# Define the text color
text_color = "white"
# Add the first line of text to the new image
draw.text(text_position_line1, line1, fill=text_color)
# Adjust the position for the second line of text, based on the height of the first line
text_position_line2 = (10, text_position_line1[1] + font_size)
# Add the second line of text to the new image
draw.text(text_position_line2, line2, fill=text_color)
return new_image
for j in range(len(image_paths)):
image_path = image_paths[j]
starting_text = starting_texts[j]
text_seq = texts[j]
image = Image.open(image_path).convert('RGB')
save_folder = '{}/val_{}'.format(save_dir, j)
os.makedirs(save_folder, exist_ok=True)
init_image = add_subtitle(image, starting_text)
save_path = os.path.join(save_folder, '000start_image.jpg')
init_image.save(save_path)
sink_kv_cache = []
agent_model.llm.base_model.model.kv_cache_head = None
agent_model.llm.base_model.model.past_key_values = None
agent_model.llm.base_model.model.use_kv_cache_head = False
image_tensor = image_transform(image).unsqueeze(0).to(device, dtype=dtype)
image_tokens = BOI_TOKEN + ''.join([IMG_TOKEN.format(int(item)) for item in range(num_img_in_tokens)]) + EOI_TOKEN
text = text_seq[0]
prompt = instruction_prompt.format_map({'instruction': starting_text + image_tokens}) + text
print(prompt)
print('*' * 20)
input_ids = tokenizer.encode(prompt, add_special_tokens=False)
input_ids = [tokenizer.bos_token_id] + input_ids
boi_idx = input_ids.index(boi_token_id)
eoi_idx = input_ids.index(eoi_token_id)
input_ids = torch.tensor(input_ids).to(device, dtype=torch.long).unsqueeze(0)
ids_cmp_mask = torch.zeros_like(input_ids, dtype=torch.bool)
ids_cmp_mask[0, boi_idx + 1:eoi_idx] = True
embeds_cmp_mask = torch.tensor([True]).to(device, dtype=torch.bool)
with torch.no_grad():
image_embeds = visual_encoder(image_tensor)
left = 0
right = input_ids.shape[1]
output = agent_model.generate(tokenizer=tokenizer,
input_ids=input_ids,
image_embeds=image_embeds,
embeds_cmp_mask=embeds_cmp_mask,
ids_cmp_mask=ids_cmp_mask,
max_new_tokens=500,
num_img_gen_tokens=num_img_out_tokens,
)
with open("{}/text.txt".format(save_folder), 'a+') as text_file:
text_file.write(text + '\n')
with open("{}/token.txt".format(save_folder), 'a+') as token_file:
token_file.write("context token: {} boi_idx: {}\n".format(input_ids.shape, boi_idx))
story_len = 25
window_size = 8
text_id = 1
while output['has_img_output'] and image_embeds.shape[0] < story_len:
image_embeds_gen = output['img_gen_feat']
images_gen = adapter.generate(image_embeds=output['img_gen_feat'], num_inference_steps=50)
name = '{:02d}.jpg'.format(text_id)
save_path = os.path.join(save_folder, name)
# Open the generated image
original_image = images_gen[0]
ori_path = os.path.join(save_folder, 'ori_{:02d}.jpg'.format(text_id))
original_image.save(ori_path)
new_image = add_subtitle(original_image, text)
# Save the modified image
new_image.save(save_path)
image_embeds = torch.cat((image_embeds, image_embeds_gen), dim=0)
# next gen
text = text_seq[text_id]
text_id += 1
# image_embeds = torch.cat((image_embeds, image_embeds_gen), dim=0)
if text_id >= story_len - 1:
break
past_key_values = [[kv[:, :, :input_ids.shape[1], :] for kv in l] for l in output['past_key_values']]
agent_model.llm.base_model.model.kv_cache_head = input_ids.shape[1]
prompt = prompt + image_tokens + text
next_input_ids = tokenizer.encode(image_tokens + text, add_special_tokens=False)
next_input_ids = torch.tensor(next_input_ids).to(device, dtype=torch.long).unsqueeze(0)
input_ids = torch.cat((input_ids, next_input_ids), dim=1)
left = right
right = input_ids.shape[1]
while image_embeds.shape[0] > window_size:
eoi_prompt_idx = prompt.index(EOI_TOKEN)
prompt = prompt[eoi_prompt_idx + len(EOI_TOKEN) :]
boi_idx = torch.where(input_ids == boi_token_id)[1].tolist()
eoi_idx = torch.where(input_ids == eoi_token_id)[1].tolist()
image_embeds = image_embeds[1:]
input_ids = input_ids[:, eoi_idx[0]+1:]
# slice kv cache
if cache_mode == 'img_head_tail':
if len(sink_kv_cache) == 0:
sink_kv_cache = [
[
kv[:, :, :4, :] for kv in l
] for l in past_key_values
]
sink_kv_cache = [
[
torch.cat(
(sink_kv_cache[l_idx][kv_idx],
kv[:, :, boi_idx[0] - 4:boi_idx[0] + 8, :],
kv[:, :, eoi_idx[0] - 8:eoi_idx[0] + 4, :]),
dim=2
) for kv_idx, kv in enumerate(l)
] for l_idx, l in enumerate(past_key_values)
]
past_key_values = [
[
torch.cat(
(sink_kv_cache[l_idx][kv_idx],
kv[:, :, eoi_idx[0] + sink_kv_cache[0][0].shape[2] + 1:, :]),
dim=2
) for kv_idx, kv in enumerate(l)
] for l_idx, l in enumerate(past_key_values)
]
# slice Left right
agent_model.llm.base_model.model.kv_cache_head -= eoi_idx[0] + 1
left -= eoi_idx[0] + 1
right -= eoi_idx[0] + 1
print("prompt: {}".format(prompt))
print('*' * 20)
boi_idx = torch.where(input_ids == boi_token_id)[1].tolist()
eoi_idx = torch.where(input_ids == eoi_token_id)[1].tolist()
ids_cmp_mask = torch.zeros_like(input_ids, dtype=torch.bool)
for i in range(image_embeds.shape[0]):
ids_cmp_mask[0, boi_idx[i] + 1:eoi_idx[i]] = True
embeds_cmp_mask = torch.tensor([True] * image_embeds.shape[0]).to(device, dtype=torch.bool)
output = agent_model.generate(tokenizer=tokenizer,
input_ids=input_ids,
image_embeds=image_embeds,
embeds_cmp_mask=embeds_cmp_mask,
ids_cmp_mask=ids_cmp_mask,
max_new_tokens=500,
num_img_gen_tokens=num_img_out_tokens,
past_key_values=None)
with open("{}/text.txt".format(save_folder), 'a+') as text_file:
text_file.write(text + '\n')
with open("{}/token.txt".format(save_folder), 'a+') as token_file:
token_file.write("context token: {} boi_idx: {}\n".format(input_ids.shape, boi_idx))