leiwx52's picture
VLog hf gradio demo
5a444be
raw
history blame
6.04 kB
import itertools
import json
import os
from detectron2.structures import Boxes, BoxMode, pairwise_iou
from detectron2.utils.file_io import PathManager
import numpy as np
import pycocotools.mask as mask_util
from detectron2.evaluation.coco_evaluation import COCOEvaluator
from detectron2.evaluation.coco_evaluation import _evaluate_predictions_on_coco
class GRiTCOCOEvaluator(COCOEvaluator):
def process(self, inputs, outputs):
for input, output in zip(inputs, outputs):
prediction = {"image_id": input["image_id"]}
if "instances" in output:
instances = output["instances"].to(self._cpu_device)
prediction["instances"] = instances_to_coco_json(instances, input["image_id"])
if len(prediction) > 1:
self._predictions.append(prediction)
def _eval_predictions(self, predictions, img_ids=None):
self._logger.info("Preparing results for COCO format ...")
coco_results = list(itertools.chain(*[x["instances"] for x in predictions]))
tasks = self._tasks or self._tasks_from_predictions(coco_results)
if self._output_dir:
file_path = os.path.join(self._output_dir, "coco_instances_results.json")
self._logger.info("Saving results to {}".format(file_path))
with PathManager.open(file_path, "w") as f:
f.write(json.dumps(coco_results))
f.flush()
if not self._do_evaluation:
self._logger.info("Annotations are not available for evaluation.")
return
self._logger.info(
"Evaluating predictions with {} COCO API...".format(
"unofficial" if self._use_fast_impl else "official"
)
)
coco_results = self.convert_classname_to_id(coco_results)
for task in sorted(tasks):
assert task in {"bbox", "segm", "keypoints"}, f"Got unknown task: {task}!"
coco_eval = (
_evaluate_predictions_on_coco(
self._coco_api,
coco_results,
task,
kpt_oks_sigmas=self._kpt_oks_sigmas,
use_fast_impl=self._use_fast_impl,
img_ids=img_ids,
max_dets_per_image=self._max_dets_per_image,
)
if len(coco_results) > 0
else None # cocoapi does not handle empty results very well
)
res = self._derive_coco_results(
coco_eval, task, class_names=self._metadata.get("thing_classes")
)
self._results[task] = res
def convert_classname_to_id(self, results):
outputs = []
class_name_to_id = {}
categories = sorted(self._coco_api.dataset['categories'], key=lambda x: x['id'])
for cat in categories:
class_name_to_id[cat['name']] = cat['id']
for pred in results:
if pred['object_descriptions'] in class_name_to_id:
pred['category_id'] = class_name_to_id[pred['object_descriptions']]
del pred['object_descriptions']
outputs.append(pred)
return outputs
class GRiTVGEvaluator(COCOEvaluator):
def process(self, inputs, outputs):
for input, output in zip(inputs, outputs):
assert input["image_id"] == int(input['file_name'].split('/')[-1].split('.')[0])
prediction = {"image_id": input["image_id"]}
if "instances" in output:
instances = output["instances"].to(self._cpu_device)
prediction["instances"] = instances_to_coco_json(instances, input["image_id"], output_logits=True)
h = input['height']
w = input['width']
scale = 720.0 / max(h, w)
scaled_inst = []
for inst in prediction["instances"]:
inst['bbox'][0] = inst['bbox'][0] * scale
inst['bbox'][1] = inst['bbox'][1] * scale
inst['bbox'][2] = inst['bbox'][2] * scale
inst['bbox'][3] = inst['bbox'][3] * scale
scaled_inst.append(inst)
if len(scaled_inst) > 0:
prediction["instances"] = scaled_inst
if len(prediction) > 1:
self._predictions.append(prediction)
def _eval_predictions(self, predictions, img_ids=None):
'''
This is only for saving the results to json file
'''
self._logger.info("Preparing results for COCO format ...")
coco_results = list(itertools.chain(*[x["instances"] for x in predictions]))
if self._output_dir:
file_path = os.path.join(self._output_dir, "vg_instances_results.json")
self._logger.info("Saving results to {}".format(file_path))
with PathManager.open(file_path, "w") as f:
f.write(json.dumps(coco_results))
f.flush()
def instances_to_coco_json(instances, img_id, output_logits=False):
"""
Add object_descriptions and logit (if applicable) to
detectron2's instances_to_coco_json
"""
num_instance = len(instances)
if num_instance == 0:
return []
boxes = instances.pred_boxes.tensor.numpy()
boxes = BoxMode.convert(boxes, BoxMode.XYXY_ABS, BoxMode.XYWH_ABS)
boxes = boxes.tolist()
scores = instances.scores.tolist()
classes = instances.pred_classes.tolist()
object_descriptions = instances.pred_object_descriptions.data
if output_logits:
logits = instances.logits.tolist()
results = []
for k in range(num_instance):
result = {
"image_id": img_id,
"category_id": classes[k],
"bbox": boxes[k],
"score": scores[k],
'object_descriptions': object_descriptions[k],
}
if output_logits:
result["logit"] = logits[k]
results.append(result)
return results