leiwx52's picture
VLog hf gradio demo
5a444be
raw
history blame
20.6 kB
# Modified by Jialian Wu from https://github.com/facebookresearch/detectron2/blob/main/detectron2/modeling/backbone/vit.py
import logging
import math
import fvcore.nn.weight_init as weight_init
import torch
import torch.nn as nn
from functools import partial
from detectron2.layers import CNNBlockBase, Conv2d, get_norm
from detectron2.modeling.backbone.build import BACKBONE_REGISTRY
from detectron2.layers import ShapeSpec
from centernet.modeling.backbone.fpn_p5 import LastLevelP6P7_P5
import torch.utils.checkpoint as checkpoint
from timm.models.layers import DropPath, Mlp, trunc_normal_
from detectron2.modeling.backbone.backbone import Backbone
from .utils import (
PatchEmbed,
add_decomposed_rel_pos,
get_abs_pos,
window_partition,
window_unpartition,
)
logger = logging.getLogger(__name__)
__all__ = ["ViT"]
class Attention(nn.Module):
"""Multi-head Attention block with relative position embeddings."""
def __init__(
self,
dim,
num_heads=8,
qkv_bias=True,
use_rel_pos=False,
rel_pos_zero_init=True,
input_size=None,
):
"""
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads.
qkv_bias (bool: If True, add a learnable bias to query, key, value.
rel_pos (bool): If True, add relative positional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
input_size (int or None): Input resolution for calculating the relative positional
parameter size.
"""
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.scale = head_dim**-0.5
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
self.proj = nn.Linear(dim, dim)
self.use_rel_pos = use_rel_pos
if self.use_rel_pos:
# initialize relative positional embeddings
self.rel_pos_h = nn.Parameter(torch.zeros(2 * input_size[0] - 1, head_dim))
self.rel_pos_w = nn.Parameter(torch.zeros(2 * input_size[1] - 1, head_dim))
if not rel_pos_zero_init:
trunc_normal_(self.rel_pos_h, std=0.02)
trunc_normal_(self.rel_pos_w, std=0.02)
def forward(self, x):
B, H, W, _ = x.shape
# qkv with shape (3, B, nHead, H * W, C)
qkv = self.qkv(x).reshape(B, H * W, 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
# q, k, v with shape (B * nHead, H * W, C)
q, k, v = qkv.reshape(3, B * self.num_heads, H * W, -1).unbind(0)
attn = (q * self.scale) @ k.transpose(-2, -1)
if self.use_rel_pos:
attn = add_decomposed_rel_pos(attn, q, self.rel_pos_h, self.rel_pos_w, (H, W), (H, W))
attn = attn.softmax(dim=-1)
x = (attn @ v).view(B, self.num_heads, H, W, -1).permute(0, 2, 3, 1, 4).reshape(B, H, W, -1)
x = self.proj(x)
return x
class ResBottleneckBlock(CNNBlockBase):
"""
The standard bottleneck residual block without the last activation layer.
It contains 3 conv layers with kernels 1x1, 3x3, 1x1.
"""
def __init__(
self,
in_channels,
out_channels,
bottleneck_channels,
norm="LN",
act_layer=nn.GELU,
):
"""
Args:
in_channels (int): Number of input channels.
out_channels (int): Number of output channels.
bottleneck_channels (int): number of output channels for the 3x3
"bottleneck" conv layers.
norm (str or callable): normalization for all conv layers.
See :func:`layers.get_norm` for supported format.
act_layer (callable): activation for all conv layers.
"""
super().__init__(in_channels, out_channels, 1)
self.conv1 = Conv2d(in_channels, bottleneck_channels, 1, bias=False)
self.norm1 = get_norm(norm, bottleneck_channels)
self.act1 = act_layer()
self.conv2 = Conv2d(
bottleneck_channels,
bottleneck_channels,
3,
padding=1,
bias=False,
)
self.norm2 = get_norm(norm, bottleneck_channels)
self.act2 = act_layer()
self.conv3 = Conv2d(bottleneck_channels, out_channels, 1, bias=False)
self.norm3 = get_norm(norm, out_channels)
for layer in [self.conv1, self.conv2, self.conv3]:
weight_init.c2_msra_fill(layer)
for layer in [self.norm1, self.norm2]:
layer.weight.data.fill_(1.0)
layer.bias.data.zero_()
# zero init last norm layer.
self.norm3.weight.data.zero_()
self.norm3.bias.data.zero_()
def forward(self, x):
out = x
for layer in self.children():
out = layer(out)
out = x + out
return out
class Block(nn.Module):
"""Transformer blocks with support of window attention and residual propagation blocks"""
def __init__(
self,
dim,
num_heads,
mlp_ratio=4.0,
qkv_bias=True,
drop_path=0.0,
norm_layer=nn.LayerNorm,
act_layer=nn.GELU,
use_rel_pos=False,
rel_pos_zero_init=True,
window_size=0,
use_residual_block=False,
input_size=None,
):
"""
Args:
dim (int): Number of input channels.
num_heads (int): Number of attention heads in each ViT block.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool): If True, add a learnable bias to query, key, value.
drop_path (float): Stochastic depth rate.
norm_layer (nn.Module): Normalization layer.
act_layer (nn.Module): Activation layer.
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
window_size (int): Window size for window attention blocks. If it equals 0, then not
use window attention.
use_residual_block (bool): If True, use a residual block after the MLP block.
input_size (int or None): Input resolution for calculating the relative positional
parameter size.
"""
super().__init__()
self.norm1 = norm_layer(dim)
self.attn = Attention(
dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
use_rel_pos=use_rel_pos,
rel_pos_zero_init=rel_pos_zero_init,
input_size=input_size if window_size == 0 else (window_size, window_size),
)
self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()
self.norm2 = norm_layer(dim)
self.mlp = Mlp(in_features=dim, hidden_features=int(dim * mlp_ratio), act_layer=act_layer)
self.window_size = window_size
self.use_residual_block = use_residual_block
if use_residual_block:
# Use a residual block with bottleneck channel as dim // 2
self.residual = ResBottleneckBlock(
in_channels=dim,
out_channels=dim,
bottleneck_channels=dim // 2,
norm="LN",
act_layer=act_layer,
)
def forward(self, x):
shortcut = x
x = self.norm1(x)
# Window partition
if self.window_size > 0:
H, W = x.shape[1], x.shape[2]
x, pad_hw = window_partition(x, self.window_size)
x = self.attn(x)
# Reverse window partition
if self.window_size > 0:
x = window_unpartition(x, self.window_size, pad_hw, (H, W))
x = shortcut + self.drop_path(x)
x = x + self.drop_path(self.mlp(self.norm2(x)))
if self.use_residual_block:
x = self.residual(x.permute(0, 3, 1, 2)).permute(0, 2, 3, 1)
return x
class ViT(Backbone):
"""
This module implements Vision Transformer (ViT) backbone in :paper:`vitdet`.
"Exploring Plain Vision Transformer Backbones for Object Detection",
https://arxiv.org/abs/2203.16527
"""
def __init__(
self,
img_size=1024,
patch_size=16,
in_chans=3,
embed_dim=768,
depth=12,
num_heads=12,
mlp_ratio=4.0,
qkv_bias=True,
drop_path_rate=0.0,
norm_layer=nn.LayerNorm,
act_layer=nn.GELU,
use_abs_pos=True,
use_rel_pos=False,
rel_pos_zero_init=True,
window_size=0,
window_block_indexes=(),
residual_block_indexes=(),
use_act_checkpoint=True,
pretrain_img_size=224,
pretrain_use_cls_token=True,
out_feature="last_feat",
):
"""
Args:
img_size (int): Input image size.
patch_size (int): Patch size.
in_chans (int): Number of input image channels.
embed_dim (int): Patch embedding dimension.
depth (int): Depth of ViT.
num_heads (int): Number of attention heads in each ViT block.
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
qkv_bias (bool): If True, add a learnable bias to query, key, value.
drop_path_rate (float): Stochastic depth rate.
norm_layer (nn.Module): Normalization layer.
act_layer (nn.Module): Activation layer.
use_abs_pos (bool): If True, use absolute positional embeddings.
use_rel_pos (bool): If True, add relative positional embeddings to the attention map.
rel_pos_zero_init (bool): If True, zero initialize relative positional parameters.
window_size (int): Window size for window attention blocks.
window_block_indexes (list): Indexes for blocks using window attention.
residual_block_indexes (list): Indexes for blocks using conv propagation.
use_act_checkpoint (bool): If True, use activation checkpointing.
pretrain_img_size (int): input image size for pretraining models.
pretrain_use_cls_token (bool): If True, pretrainig models use class token.
out_feature (str): name of the feature from the last block.
"""
super().__init__()
self.pretrain_use_cls_token = pretrain_use_cls_token
self.use_act_checkpoint = use_act_checkpoint
self.patch_embed = PatchEmbed(
kernel_size=(patch_size, patch_size),
stride=(patch_size, patch_size),
in_chans=in_chans,
embed_dim=embed_dim,
)
if use_abs_pos:
# Initialize absolute positional embedding with pretrain image size.
num_patches = (pretrain_img_size // patch_size) * (pretrain_img_size // patch_size)
num_positions = (num_patches + 1) if pretrain_use_cls_token else num_patches
self.pos_embed = nn.Parameter(torch.zeros(1, num_positions, embed_dim))
else:
self.pos_embed = None
# stochastic depth decay rule
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
self.blocks = nn.ModuleList()
for i in range(depth):
block = Block(
dim=embed_dim,
num_heads=num_heads,
mlp_ratio=mlp_ratio,
qkv_bias=qkv_bias,
drop_path=dpr[i],
norm_layer=norm_layer,
act_layer=act_layer,
use_rel_pos=use_rel_pos,
rel_pos_zero_init=rel_pos_zero_init,
window_size=window_size if i in window_block_indexes else 0,
use_residual_block=i in residual_block_indexes,
input_size=(img_size // patch_size, img_size // patch_size),
)
self.blocks.append(block)
self._out_feature_channels = {out_feature: embed_dim}
self._out_feature_strides = {out_feature: patch_size}
self._out_features = [out_feature]
if self.pos_embed is not None:
trunc_normal_(self.pos_embed, std=0.02)
self.apply(self._init_weights)
def _init_weights(self, m):
if isinstance(m, nn.Linear):
trunc_normal_(m.weight, std=0.02)
if isinstance(m, nn.Linear) and m.bias is not None:
nn.init.constant_(m.bias, 0)
elif isinstance(m, nn.LayerNorm):
nn.init.constant_(m.bias, 0)
nn.init.constant_(m.weight, 1.0)
def forward(self, x):
x = self.patch_embed(x)
if self.pos_embed is not None:
x = x + get_abs_pos(
self.pos_embed, self.pretrain_use_cls_token, (x.shape[1], x.shape[2])
)
for blk in self.blocks:
if self.use_act_checkpoint:
x = checkpoint.checkpoint(blk, x)
else:
x = blk(x)
return x.permute(0, 3, 1, 2)
class ViT_FPN(Backbone):
def __init__(self, bottom_up=None, top_block=None, out_channels=None, strides=None, vit_out_dim=None):
super(ViT_FPN, self).__init__()
assert isinstance(bottom_up, Backbone)
self.bottom_up = bottom_up
self.top_block = top_block
self._out_feature_strides = {"p{}".format(int(math.log2(s))): s for s in strides}
self._out_features = list(self._out_feature_strides.keys())
self._out_feature_channels = {k: out_channels for k in self._out_features}
self._size_divisibility = strides[2]
self.maxpool = nn.MaxPool2d(2, stride=2)
self.fpn_stride_16_8 = nn.ConvTranspose2d(vit_out_dim, vit_out_dim, 2, stride=2, bias=False)
self.fpn_stride8_conv1 = nn.Conv2d(in_channels=vit_out_dim, out_channels=out_channels, kernel_size=1, bias=False)
self.fpn_stride8_norm1 = nn.LayerNorm(out_channels)
self.fpn_stride8_conv2 = nn.Conv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.fpn_stride8_norm2 = nn.LayerNorm(out_channels)
self.fpn_stride16_conv1 = nn.Conv2d(in_channels=vit_out_dim, out_channels=out_channels, kernel_size=1, bias=False)
self.fpn_stride16_norm1 = nn.LayerNorm(out_channels)
self.fpn_stride16_conv2 = nn.Conv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.fpn_stride16_norm2 = nn.LayerNorm(out_channels)
self.fpn_stride32_conv1 = nn.Conv2d(in_channels=vit_out_dim, out_channels=out_channels, kernel_size=1, bias=False)
self.fpn_stride32_norm1 = nn.LayerNorm(out_channels)
self.fpn_stride32_conv2 = nn.Conv2d(in_channels=out_channels, out_channels=out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.fpn_stride32_norm2 = nn.LayerNorm(out_channels)
def forward(self, x):
vit_output_featuremap = self.bottom_up(x)
stride8_feature = self.fpn_stride_16_8(vit_output_featuremap)
stride8_feature = self.fpn_stride8_norm1(self.fpn_stride8_conv1(stride8_feature)
.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
stride8_feature = self.fpn_stride8_norm2(self.fpn_stride8_conv2(stride8_feature)
.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
stride32_feature = self.maxpool(vit_output_featuremap)
stride32_feature = self.fpn_stride32_norm1(self.fpn_stride32_conv1(stride32_feature)
.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
stride32_feature = self.fpn_stride32_norm2(self.fpn_stride32_conv2(stride32_feature)
.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
stride16_feature = self.fpn_stride16_norm1(self.fpn_stride16_conv1(vit_output_featuremap).
permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
stride16_feature = self.fpn_stride16_norm2(self.fpn_stride16_conv2(stride16_feature)
.permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
results = [stride8_feature, stride16_feature, stride32_feature]
results.extend(self.top_block(stride32_feature))
assert len(self._out_features) == len(results)
fpn_out = {f: res for f, res in zip(self._out_features, results)}
return fpn_out
@property
def size_divisibility(self):
return self._size_divisibility
def output_shape(self):
return {
name: ShapeSpec(
channels=self._out_feature_channels[name], stride=self._out_feature_strides[name]
)
for name in self._out_features
}
@BACKBONE_REGISTRY.register()
def build_vit_fpn_backbone(cfg, input_shape: ShapeSpec):
embed_dim = 768
vit_out_dim = embed_dim
bottom_up = ViT( # Single-scale ViT backbone
img_size=1024,
patch_size=16,
embed_dim=embed_dim,
depth=12,
num_heads=12,
drop_path_rate=0.1,
window_size=14,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
window_block_indexes=[
# 2, 5, 8 11 for global attention
0,
1,
3,
4,
6,
7,
9,
10,
],
residual_block_indexes=[],
use_act_checkpoint=cfg.USE_ACT_CHECKPOINT,
use_rel_pos=True,
out_feature="last_feat",)
out_channels = cfg.MODEL.FPN.OUT_CHANNELS
assert out_channels == 256 or out_channels == 768 or out_channels == 1024
backbone = ViT_FPN(bottom_up=bottom_up,
top_block=LastLevelP6P7_P5(out_channels, out_channels),
out_channels=out_channels,
strides=[8, 16, 32, 64, 128],
vit_out_dim=vit_out_dim)
return backbone
@BACKBONE_REGISTRY.register()
def build_vit_fpn_backbone_large(cfg, input_shape: ShapeSpec):
window_block_indexes = (list(range(0, 5)) + list(range(6, 11)) + list(range(12, 17)) + list(range(18, 23)))
embed_dim = 1024
vit_out_dim = embed_dim
bottom_up = ViT( # Single-scale ViT backbone
img_size=1024,
patch_size=16,
embed_dim=embed_dim,
depth=24,
num_heads=16,
drop_path_rate=0.4,
window_size=14,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
window_block_indexes=window_block_indexes,
residual_block_indexes=[],
use_act_checkpoint=cfg.USE_ACT_CHECKPOINT,
use_rel_pos=True,
out_feature="last_feat",)
out_channels = cfg.MODEL.FPN.OUT_CHANNELS
assert out_channels == 256 or out_channels == 768 or out_channels == 1024
backbone = ViT_FPN(bottom_up=bottom_up,
top_block=LastLevelP6P7_P5(out_channels, out_channels),
out_channels=out_channels,
strides=[8, 16, 32, 64, 128],
vit_out_dim=vit_out_dim)
return backbone
@BACKBONE_REGISTRY.register()
def build_vit_fpn_backbone_huge(cfg, input_shape: ShapeSpec):
window_block_indexes = (list(range(0, 7)) + list(range(8, 15)) + list(range(16, 23)) + list(range(24, 31)))
embed_dim = 1280
vit_out_dim = embed_dim
bottom_up = ViT( # Single-scale ViT backbone
img_size=1024,
patch_size=16,
embed_dim=embed_dim,
depth=32,
num_heads=16,
drop_path_rate=0.5,
window_size=14,
mlp_ratio=4,
qkv_bias=True,
norm_layer=partial(nn.LayerNorm, eps=1e-6),
window_block_indexes=window_block_indexes,
residual_block_indexes=[],
use_act_checkpoint=cfg.USE_ACT_CHECKPOINT,
use_rel_pos=True,
out_feature="last_feat",)
out_channels = cfg.MODEL.FPN.OUT_CHANNELS
assert out_channels == 256 or out_channels == 768 or out_channels == 1024
backbone = ViT_FPN(bottom_up=bottom_up,
top_block=LastLevelP6P7_P5(out_channels, out_channels),
out_channels=out_channels,
strides=[8, 16, 32, 64, 128],
vit_out_dim=vit_out_dim)
return backbone