Spaces:
Build error
Build error
import argparse | |
from langchain_community.vectorstores import Chroma | |
from langchain.prompts import ChatPromptTemplate | |
from langchain_community.llms.ollama import Ollama | |
from get_embedding_function import get_embedding_function | |
CHROMA_PATH = "chroma" | |
PROMPT_TEMPLATE = """ | |
Answer the question based only on the following context: | |
{context} | |
--- | |
Answer the question based on the above context: {question} | |
""" | |
def main(): | |
# Create CLI. | |
# parser = argparse.ArgumentParser() | |
# parser.add_argument("query_text", type=str, help="The query text.") | |
# args = parser.parse_args() | |
# query_text = args.query_text | |
# query_rag(query_text) | |
query_rag(input( "Enter your query: ")) | |
def query_rag(query_text: str): | |
# Prepare the DB. | |
embedding_function = get_embedding_function() | |
db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function) | |
# Search the DB. | |
results = db.similarity_search_with_score(query_text, k=5) | |
context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results]) | |
prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE) | |
prompt = prompt_template.format(context=context_text, question=query_text) | |
# print(prompt) | |
model = Ollama(model="mistral") | |
response_text = model.invoke(prompt) | |
sources = [doc.metadata.get("id", None) for doc, _score in results] | |
formatted_response = f"Response: {response_text}\nSources: {sources}" | |
print(formatted_response) | |
return response_text | |
if __name__ == "__main__": | |
main() | |