import argparse from langchain_community.vectorstores import Chroma from langchain.prompts import ChatPromptTemplate from langchain_community.llms.ollama import Ollama from get_embedding_function import get_embedding_function CHROMA_PATH = "chroma" PROMPT_TEMPLATE = """ Answer the question based only on the following context: {context} --- Answer the question based on the above context: {question} """ def main(): # Create CLI. # parser = argparse.ArgumentParser() # parser.add_argument("query_text", type=str, help="The query text.") # args = parser.parse_args() # query_text = args.query_text # query_rag(query_text) query_rag(input( "Enter your query: ")) def query_rag(query_text: str): # Prepare the DB. embedding_function = get_embedding_function() db = Chroma(persist_directory=CHROMA_PATH, embedding_function=embedding_function) # Search the DB. results = db.similarity_search_with_score(query_text, k=5) context_text = "\n\n---\n\n".join([doc.page_content for doc, _score in results]) prompt_template = ChatPromptTemplate.from_template(PROMPT_TEMPLATE) prompt = prompt_template.format(context=context_text, question=query_text) # print(prompt) model = Ollama(model="mistral") response_text = model.invoke(prompt) sources = [doc.metadata.get("id", None) for doc, _score in results] formatted_response = f"Response: {response_text}\nSources: {sources}" print(formatted_response) return response_text if __name__ == "__main__": main()