import os
import time
from typing import List, Tuple, Optional, Dict
import google.generativeai as genai
import gradio as gr
from PIL import Image
print("google-generativeai:", genai.__version__)
GGL_API_KEY = os.environ.get("GGL_API_KEY")
gglusr = os.environ.get("GGL_USR")
gglpwd = os.environ.get("GGL_PWD")
TITLE = """
🫐Blueberry-AI Buruburu Chat🫐
"""
IMAGE_WIDTH = 32
def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]:
if not stop_sequences:
return None
return [sequence.strip() for sequence in stop_sequences.split(",")]
def preprocess_image(image: Image.Image) -> Optional[Image.Image]:
image_height = int(image.height * IMAGE_WIDTH / image.width)
return image.resize((IMAGE_WIDTH, image_height))
def preprocess_chat_history(
history: List[Tuple[Optional[str], Optional[str]]]
) -> List[Dict[str, List[str]]]:
messages = []
for user_message, model_message in history:
if user_message is not None:
messages.append({'role': 'user', 'parts': [user_message]})
if model_message is not None:
messages.append({'role': 'model', 'parts': [model_message]})
return messages
def user(text_prompt: str, chatbot: List[Tuple[str, str]]):
return "", chatbot + [[text_prompt, None]]
def bot(
image_prompt: Optional[Image.Image],
temperature: float,
max_output_tokens: int,
stop_sequences: str,
top_k: int,
top_p: float,
chatbot: List[Tuple[str, str]]
):
text_prompt = chatbot[-1][0]
genai.configure(api_key=GGL_API_KEY)
generation_config = genai.types.GenerationConfig(
temperature=temperature,
max_output_tokens=max_output_tokens,
stop_sequences=preprocess_stop_sequences(stop_sequences=stop_sequences),
top_k=top_k,
top_p=top_p)
if image_prompt is None:
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(
preprocess_chat_history(chatbot),
stream=True,
generation_config=generation_config)
response.resolve()
else:
image_prompt = preprocess_image(image_prompt)
model = genai.GenerativeModel('gemini-1.5-flash')
response = model.generate_content(
contents=[text_prompt, image_prompt],
stream=True,
generation_config=generation_config)
response.resolve()
# streaming effect
chatbot[-1][1] = ""
for chunk in response:
for i in range(0, len(chunk.text), 10):
section = chunk.text[i:i + 10]
chatbot[-1][1] += section
time.sleep(0.01)
yield chatbot
image_prompt_component = gr.Image(type="pil", label="Image", scale=1, height=70)
chatbot_component = gr.Chatbot(
label='Blueberry-AI',
bubble_full_width=False,
avatar_images=("./usr.png", "./bot.png"),
likeable=True,
show_copy_button=True,
scale=8,
height=350
)
text_prompt_component = gr.Textbox(
placeholder="Ask me anything and press Enter",
show_label=False,
scale=8
)
run_button_component = gr.Button()
temperature_component = gr.Slider(
minimum=0,
maximum=1.0,
value=0.4,
step=0.05,
label="Temperature",
info=(
"Temperature controls the degree of randomness in token selection. Lower "
"temperatures are good for prompts that expect a true or correct response, "
"while higher temperatures can lead to more diverse or unexpected results. "
))
max_output_tokens_component = gr.Slider(
minimum=1,
maximum=2048,
value=1024,
step=1,
label="Token limit",
info=(
"Token limit determines the maximum amount of text output from one prompt. A "
"token is approximately four characters. The default value is 2048."
))
stop_sequences_component = gr.Textbox(
label="Add stop sequence",
value="",
type="text",
placeholder="STOP, END",
info=(
"A stop sequence is a series of characters (including spaces) that stops "
"response generation if the model encounters it. The sequence is not included "
"as part of the response. You can add up to five stop sequences."
))
top_k_component = gr.Slider(
minimum=1,
maximum=40,
value=32,
step=1,
label="Top-K",
info=(
"Top-k changes how the model selects tokens for output. A top-k of 1 means the "
"selected token is the most probable among all tokens in the model’s "
"vocabulary (also called greedy decoding), while a top-k of 3 means that the "
"next token is selected from among the 3 most probable tokens (using "
"temperature)."
))
top_p_component = gr.Slider(
minimum=0,
maximum=1,
value=1,
step=0.01,
label="Top-P",
info=(
"Top-p changes how the model selects tokens for output. Tokens are selected "
"from most probable to least until the sum of their probabilities equals the "
"top-p value. For example, if tokens A, B, and C have a probability of .3, .2, "
"and .1 and the top-p value is .5, then the model will select either A or B as "
"the next token (using temperature). "
))
user_inputs = [
text_prompt_component,
chatbot_component
]
bot_inputs = [
image_prompt_component,
temperature_component,
max_output_tokens_component,
stop_sequences_component,
top_k_component,
top_p_component,
chatbot_component
]
with gr.Blocks() as demo:
gr.HTML(TITLE)
with gr.Column():
with gr.Row():
chatbot_component.render()
with gr.Row():
text_prompt_component.render()
image_prompt_component.render()
with gr.Row():
run_button_component.render()
with gr.Accordion("Parameters", open=False):
temperature_component.render()
max_output_tokens_component.render()
stop_sequences_component.render()
with gr.Accordion("Advanced", open=False):
top_k_component.render()
top_p_component.render()
run_button_component.click(
fn=user,
inputs=user_inputs,
outputs=[text_prompt_component, chatbot_component],
queue=False
).then(
fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
)
text_prompt_component.submit(
fn=user,
inputs=user_inputs,
outputs=[text_prompt_component, chatbot_component],
queue=False
).then(
fn=bot, inputs=bot_inputs, outputs=[chatbot_component],
)
demo.queue(max_size=99).launch(auth=(gglusr, gglpwd),show_api=False, debug=False, show_error=True)