File size: 3,169 Bytes
d09d67d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
"""
Taken from ESPNet
"""

import torch


class PostNet(torch.nn.Module):
    """
    From Tacotron2

    Postnet module for Spectrogram prediction network.

    This is a module of Postnet in Spectrogram prediction network,
    which described in `Natural TTS Synthesis by
    Conditioning WaveNet on Mel Spectrogram Predictions`_.
    The Postnet refines the predicted
    Mel-filterbank of the decoder,
    which helps to compensate the detail sturcture of spectrogram.

    .. _`Natural TTS Synthesis by Conditioning WaveNet on Mel Spectrogram Predictions`:
       https://arxiv.org/abs/1712.05884
    """

    def __init__(self, idim, odim, n_layers=5, n_chans=512, n_filts=5, dropout_rate=0.5, use_batch_norm=True):
        """
        Initialize postnet module.

        Args:
            idim (int): Dimension of the inputs.
            odim (int): Dimension of the outputs.
            n_layers (int, optional): The number of layers.
            n_filts (int, optional): The number of filter size.
            n_units (int, optional): The number of filter channels.
            use_batch_norm (bool, optional): Whether to use batch normalization..
            dropout_rate (float, optional): Dropout rate..
        """
        super(PostNet, self).__init__()
        self.postnet = torch.nn.ModuleList()
        for layer in range(n_layers - 1):
            ichans = odim if layer == 0 else n_chans
            ochans = odim if layer == n_layers - 1 else n_chans
            if use_batch_norm:
                self.postnet += [torch.nn.Sequential(torch.nn.Conv1d(ichans, ochans, n_filts, stride=1, padding=(n_filts - 1) // 2, bias=False, ),
                                                     torch.nn.GroupNorm(num_groups=32, num_channels=ochans), torch.nn.Tanh(),
                                                     torch.nn.Dropout(dropout_rate), )]

            else:
                self.postnet += [
                    torch.nn.Sequential(torch.nn.Conv1d(ichans, ochans, n_filts, stride=1, padding=(n_filts - 1) // 2, bias=False, ), torch.nn.Tanh(),
                                        torch.nn.Dropout(dropout_rate), )]
        ichans = n_chans if n_layers != 1 else odim
        if use_batch_norm:
            self.postnet += [torch.nn.Sequential(torch.nn.Conv1d(ichans, odim, n_filts, stride=1, padding=(n_filts - 1) // 2, bias=False, ),
                                                 torch.nn.GroupNorm(num_groups=20, num_channels=odim),
                                                 torch.nn.Dropout(dropout_rate), )]

        else:
            self.postnet += [torch.nn.Sequential(torch.nn.Conv1d(ichans, odim, n_filts, stride=1, padding=(n_filts - 1) // 2, bias=False, ),
                                                 torch.nn.Dropout(dropout_rate), )]

    def forward(self, xs):
        """
        Calculate forward propagation.

        Args:
            xs (Tensor): Batch of the sequences of padded input tensors (B, idim, Tmax).

        Returns:
            Tensor: Batch of padded output tensor. (B, odim, Tmax).
        """
        for i in range(len(self.postnet)):
            xs = self.postnet[i](xs)
        return xs