from diffusers import (StableDiffusionXLImg2ImgPipeline, AutoencoderKL) from diffusers.utils import load_image import torch import time import utilities as u import card_generator as card from PIL import Image pipe = None start_time = time.time() torch.backends.cuda.matmul.allow_tf32 = True model_path = ("/media/drakosfire/Shared/models/stable-diffusion/card-generator-v1/card-generator-v1.safetensors") lora_path = "/media/drakosfire/Shared/models/stable-diffusion/Loras/card-generator-v1/blank-card-template-5.safetensors" detail_lora_path = "./models/stable-diffusion/card-generator-v1/add-detail-xl.safetensors" mimic_lora_path = "./models/stable-diffusion/Loras/EnvyMimicXL01.safetensors" temp_image_path = "./image_temp/" card_pre_prompt = " blank magic card,high resolution, detailed intricate high quality border, textbox, high quality detailed magnum opus drawing of a " negative_prompts = "text, words, numbers, letters" image_list = [] def load_img_gen(prompt, item, mimic = None): prompt = card_pre_prompt + item + ' ' + prompt print(prompt) # image_path = f"{user_input_template}" # init_image = load_image(image_path).convert("RGB") pipe = StableDiffusionXLImg2ImgPipeline.from_single_file(model_path, custom_pipeline="low_stable_diffusion", torch_dtype=torch.float16, variant="fp16").to("cuda") # Load LoRAs for controlling image #pipe.load_lora_weights(lora_path, weight_name = "blank-card-template-5.safetensors",adapter_name = 'blank-card-template') pipe.load_lora_weights(detail_lora_path, weight_name = "add-detail-xl.safetensors", adapter_name = "add-detail-xl") # If mimic keyword has been detected, load the mimic LoRA and set adapter values if mimic: pipe.load_lora_weights(mimic_lora_path, weight_name = "EnvyMimicXL01.safetensors", adapter_name = "EnvyMimicXL") pipe.set_adapters(['blank-card-template', "add-detail-xl", "EnvyMimicXL"], adapter_weights = [0.9,0.9,1.0]) else : pipe.set_adapters([ "add-detail-xl"], adapter_weights = [0.9]) pipe.enable_vae_slicing() return pipe, prompt def preview_and_generate_image(x,pipe, prompt, user_input_template, item): img_start = time.time() image = pipe(prompt=prompt, strength = .9, guidance_scale = 5, image= user_input_template, negative_promt = negative_prompts, num_inference_steps=40, height = 1024, width = 768).images[0] image = image.save(temp_image_path+str(x) + f"{item}.png") output_image_path = temp_image_path+str(x) + f"{item}.png" img_time = time.time() - img_start img_its = 50/img_time print(f"image gen time = {img_time} and {img_its} it/s") # Delete the image variable to keep VRAM open to load the LLM del image print(f"Memory after del {torch.cuda.memory_allocated()}") print(image_list) total_time = time.time() - start_time print(total_time) return output_image_path