TheEeeeLin's picture
update files
d5d20be verified
raw
history blame
12.4 kB
"""
@author: cuny
@file: ThinFace.py
@time: 2022/7/2 15:50
@description:
瘦脸算法,用到了图像局部平移法
先使用人脸关键点检测,然后再使用图像局部平移法
需要注意的是,这部分不会包含dlib人脸关键点检测,因为考虑到模型载入的问题
"""
import cv2
import math
import numpy as np
class TranslationWarp(object):
"""
本类包含瘦脸算法,由于瘦脸算法包含了很多个版本,所以以类的方式呈现
前两个算法没什么好讲的,网上资料很多
第三个采用numpy内部的自定义函数处理,在处理速度上有一些提升
最后采用cv2.map算法,处理速度大幅度提升
"""
# 瘦脸
@staticmethod
def localTranslationWarp(srcImg, startX, startY, endX, endY, radius):
# 双线性插值法
def BilinearInsert(src, ux, uy):
w, h, c = src.shape
if c == 3:
x1 = int(ux)
x2 = x1 + 1
y1 = int(uy)
y2 = y1 + 1
part1 = src[y1, x1].astype(np.float64) * (float(x2) - ux) * (float(y2) - uy)
part2 = src[y1, x2].astype(np.float64) * (ux - float(x1)) * (float(y2) - uy)
part3 = src[y2, x1].astype(np.float64) * (float(x2) - ux) * (uy - float(y1))
part4 = src[y2, x2].astype(np.float64) * (ux - float(x1)) * (uy - float(y1))
insertValue = part1 + part2 + part3 + part4
return insertValue.astype(np.int8)
ddradius = float(radius * radius) # 圆的半径
copyImg = srcImg.copy() # copy后的图像矩阵
# 计算公式中的|m-c|^2
ddmc = (endX - startX) * (endX - startX) + (endY - startY) * (endY - startY)
H, W, C = srcImg.shape # 获取图像的形状
for i in range(W):
for j in range(H):
# # 计算该点是否在形变圆的范围之内
# # 优化,第一步,直接判断是会在(startX,startY)的矩阵框中
if math.fabs(i - startX) > radius and math.fabs(j - startY) > radius:
continue
distance = (i - startX) * (i - startX) + (j - startY) * (j - startY)
if distance < ddradius:
# 计算出(i,j)坐标的原坐标
# 计算公式中右边平方号里的部分
ratio = (ddradius - distance) / (ddradius - distance + ddmc)
ratio = ratio * ratio
# 映射原位置
UX = i - ratio * (endX - startX)
UY = j - ratio * (endY - startY)
# 根据双线性插值法得到UX,UY的值
# start_ = time.time()
value = BilinearInsert(srcImg, UX, UY)
# print(f"双线性插值耗时;{time.time() - start_}")
# 改变当前 i ,j的值
copyImg[j, i] = value
return copyImg
# 瘦脸pro1, 限制了for循环的遍历次数
@staticmethod
def localTranslationWarpLimitFor(srcImg, startP: np.matrix, endP: np.matrix, radius: float):
startX, startY = startP[0, 0], startP[0, 1]
endX, endY = endP[0, 0], endP[0, 1]
# 双线性插值法
def BilinearInsert(src, ux, uy):
w, h, c = src.shape
if c == 3:
x1 = int(ux)
x2 = x1 + 1
y1 = int(uy)
y2 = y1 + 1
part1 = src[y1, x1].astype(np.float64) * (float(x2) - ux) * (float(y2) - uy)
part2 = src[y1, x2].astype(np.float64) * (ux - float(x1)) * (float(y2) - uy)
part3 = src[y2, x1].astype(np.float64) * (float(x2) - ux) * (uy - float(y1))
part4 = src[y2, x2].astype(np.float64) * (ux - float(x1)) * (uy - float(y1))
insertValue = part1 + part2 + part3 + part4
return insertValue.astype(np.int8)
ddradius = float(radius * radius) # 圆的半径
copyImg = srcImg.copy() # copy后的图像矩阵
# 计算公式中的|m-c|^2
ddmc = (endX - startX) ** 2 + (endY - startY) ** 2
# 计算正方形的左上角起始点
startTX, startTY = (startX - math.floor(radius + 1), startY - math.floor((radius + 1)))
# 计算正方形的右下角的结束点
endTX, endTY = (startX + math.floor(radius + 1), startY + math.floor((radius + 1)))
# 剪切srcImg
srcImg = srcImg[startTY: endTY + 1, startTX: endTX + 1, :]
# db.cv_show(srcImg)
# 裁剪后的图像相当于在x,y都减少了startX - math.floor(radius + 1)
# 原本的endX, endY在切后的坐标点
endX, endY = (endX - startX + math.floor(radius + 1), endY - startY + math.floor(radius + 1))
# 原本的startX, startY剪切后的坐标点
startX, startY = (math.floor(radius + 1), math.floor(radius + 1))
H, W, C = srcImg.shape # 获取图像的形状
for i in range(W):
for j in range(H):
# 计算该点是否在形变圆的范围之内
# 优化,第一步,直接判断是会在(startX,startY)的矩阵框中
# if math.fabs(i - startX) > radius and math.fabs(j - startY) > radius:
# continue
distance = (i - startX) * (i - startX) + (j - startY) * (j - startY)
if distance < ddradius:
# 计算出(i,j)坐标的原坐标
# 计算公式中右边平方号里的部分
ratio = (ddradius - distance) / (ddradius - distance + ddmc)
ratio = ratio * ratio
# 映射原位置
UX = i - ratio * (endX - startX)
UY = j - ratio * (endY - startY)
# 根据双线性插值法得到UX,UY的值
# start_ = time.time()
value = BilinearInsert(srcImg, UX, UY)
# print(f"双线性插值耗时;{time.time() - start_}")
# 改变当前 i ,j的值
copyImg[j + startTY, i + startTX] = value
return copyImg
# # 瘦脸pro2,采用了numpy自定义函数做处理
# def localTranslationWarpNumpy(self, srcImg, startP: np.matrix, endP: np.matrix, radius: float):
# startX , startY = startP[0, 0], startP[0, 1]
# endX, endY = endP[0, 0], endP[0, 1]
# ddradius = float(radius * radius) # 圆的半径
# copyImg = srcImg.copy() # copy后的图像矩阵
# # 计算公式中的|m-c|^2
# ddmc = (endX - startX)**2 + (endY - startY)**2
# # 计算正方形的左上角起始点
# startTX, startTY = (startX - math.floor(radius + 1), startY - math.floor((radius + 1)))
# # 计算正方形的右下角的结束点
# endTX, endTY = (startX + math.floor(radius + 1), startY + math.floor((radius + 1)))
# # 剪切srcImg
# self.thinImage = srcImg[startTY : endTY + 1, startTX : endTX + 1, :]
# # s = self.thinImage
# # db.cv_show(srcImg)
# # 裁剪后的图像相当于在x,y都减少了startX - math.floor(radius + 1)
# # 原本的endX, endY在切后的坐标点
# endX, endY = (endX - startX + math.floor(radius + 1), endY - startY + math.floor(radius + 1))
# # 原本的startX, startY剪切后的坐标点
# startX ,startY = (math.floor(radius + 1), math.floor(radius + 1))
# H, W, C = self.thinImage.shape # 获取图像的形状
# index_m = np.arange(H * W).reshape((H, W))
# triangle_ufunc = np.frompyfunc(self.process, 9, 3)
# # start_ = time.time()
# finalImgB, finalImgG, finalImgR = triangle_ufunc(index_m, self, W, ddradius, ddmc, startX, startY, endX, endY)
# finaleImg = np.dstack((finalImgB, finalImgG, finalImgR)).astype(np.uint8)
# finaleImg = np.fliplr(np.rot90(finaleImg, -1))
# copyImg[startTY: endTY + 1, startTX: endTX + 1, :] = finaleImg
# # print(f"图像处理耗时;{time.time() - start_}")
# # db.cv_show(copyImg)
# return copyImg
# 瘦脸pro3,采用opencv内置函数
@staticmethod
def localTranslationWarpFastWithStrength(srcImg, startP: np.matrix, endP: np.matrix, radius, strength: float = 100.):
"""
采用opencv内置函数
Args:
srcImg: 源图像
startP: 起点位置
endP: 终点位置
radius: 处理半径
strength: 瘦脸强度,一般取100以上
Returns:
"""
startX, startY = startP[0, 0], startP[0, 1]
endX, endY = endP[0, 0], endP[0, 1]
ddradius = float(radius * radius)
# copyImg = np.zeros(srcImg.shape, np.uint8)
# copyImg = srcImg.copy()
maskImg = np.zeros(srcImg.shape[:2], np.uint8)
cv2.circle(maskImg, (startX, startY), math.ceil(radius), (255, 255, 255), -1)
K0 = 100 / strength
# 计算公式中的|m-c|^2
ddmc_x = (endX - startX) * (endX - startX)
ddmc_y = (endY - startY) * (endY - startY)
H, W, C = srcImg.shape
mapX = np.vstack([np.arange(W).astype(np.float32).reshape(1, -1)] * H)
mapY = np.hstack([np.arange(H).astype(np.float32).reshape(-1, 1)] * W)
distance_x = (mapX - startX) * (mapX - startX)
distance_y = (mapY - startY) * (mapY - startY)
distance = distance_x + distance_y
K1 = np.sqrt(distance)
ratio_x = (ddradius - distance_x) / (ddradius - distance_x + K0 * ddmc_x)
ratio_y = (ddradius - distance_y) / (ddradius - distance_y + K0 * ddmc_y)
ratio_x = ratio_x * ratio_x
ratio_y = ratio_y * ratio_y
UX = mapX - ratio_x * (endX - startX) * (1 - K1 / radius)
UY = mapY - ratio_y * (endY - startY) * (1 - K1 / radius)
np.copyto(UX, mapX, where=maskImg == 0)
np.copyto(UY, mapY, where=maskImg == 0)
UX = UX.astype(np.float32)
UY = UY.astype(np.float32)
copyImg = cv2.remap(srcImg, UX, UY, interpolation=cv2.INTER_LINEAR)
return copyImg
def thinFace(src, landmark, place: int = 0, strength=30.):
"""
瘦脸程序接口,输入人脸关键点信息和强度,即可实现瘦脸
注意处理四通道图像
Args:
src: 原图
landmark: 关键点信息
place: 选择瘦脸区域,为0-4之间的值
strength: 瘦脸强度,输入值在0-10之间,如果小于或者等于0,则不瘦脸
Returns:
瘦脸后的图像
"""
strength = min(100., strength * 10.)
if strength <= 0.:
return src
# 也可以设置瘦脸区域
place = max(0, min(4, int(place)))
left_landmark = landmark[4 + place]
left_landmark_down = landmark[6 + place]
right_landmark = landmark[13 + place]
right_landmark_down = landmark[15 + place]
endPt = landmark[58]
# 计算第4个点到第6个点的距离作为瘦脸距离
r_left = math.sqrt(
(left_landmark[0, 0] - left_landmark_down[0, 0]) ** 2 +
(left_landmark[0, 1] - left_landmark_down[0, 1]) ** 2
)
# 计算第14个点到第16个点的距离作为瘦脸距离
r_right = math.sqrt((right_landmark[0, 0] - right_landmark_down[0, 0]) ** 2 +
(right_landmark[0, 1] - right_landmark_down[0, 1]) ** 2)
# 瘦左边脸
thin_image = TranslationWarp.localTranslationWarpFastWithStrength(src, left_landmark[0], endPt[0], r_left, strength)
# 瘦右边脸
thin_image = TranslationWarp.localTranslationWarpFastWithStrength(thin_image, right_landmark[0], endPt[0], r_right, strength)
return thin_image
if __name__ == "__main__":
import os
from hycv.FaceDetection68.faceDetection68 import FaceDetection68
local_file = os.path.dirname(__file__)
PREDICTOR_PATH = f"{local_file}/weights/shape_predictor_68_face_landmarks.dat" # 关键点检测模型路径
fd68 = FaceDetection68(model_path=PREDICTOR_PATH)
input_image = cv2.imread("test_image/4.jpg", -1)
_, landmark_, _ = fd68.facePoints(input_image)
output_image = thinFace(input_image, landmark_, strength=30.2)
cv2.imwrite("thinFaceCompare.png", np.hstack((input_image, output_image)))