Spaces:
Running
Running
import math | |
import cv2 | |
import numpy as np | |
from hivisionai.hycv.face_tools import face_detect_mtcnn | |
from hivisionai.hycv.utils import get_box_pro | |
from hivisionai.hycv.vision import resize_image_esp, IDphotos_cut, add_background, calTime, resize_image_by_min, \ | |
rotate_bound_4channels | |
import onnxruntime | |
from src.error import IDError | |
from src.imageTransform import standard_photo_resize, hollowOutFix, get_modnet_matting, draw_picture_dots, detect_distance | |
from src.layoutCreate import generate_layout_photo | |
from src.move_image import move | |
testImages = [] | |
class LinearFunction_TwoDots(object): | |
""" | |
通过两个坐标点构建线性函数 | |
""" | |
def __init__(self, dot1, dot2): | |
self.d1 = dot1 | |
self.d2 = dot2 | |
self.mode = "normal" | |
if self.d2.x != self.d1.x: | |
self.k = (self.d2.y - self.d1.y) / max((self.d2.x - self.d1.x), 1) | |
self.b = self.d2.y - self.k * self.d2.x | |
else: | |
self.mode = "x=1" | |
def forward(self, input_, mode="x"): | |
if mode == "x": | |
if self.mode == "normal": | |
return self.k * input_ + self.b | |
else: | |
return 0 | |
elif mode == "y": | |
if self.mode == "normal": | |
return (input_ - self.b) / self.k | |
else: | |
return self.d1.x | |
def forward_x(self, x): | |
if self.mode == "normal": | |
return self.k * x + self.b | |
else: | |
return 0 | |
def forward_y(self, y): | |
if self.mode == "normal": | |
return (y - self.b) / self.k | |
else: | |
return self.d1.x | |
class Coordinate(object): | |
def __init__(self, x, y): | |
self.x = x | |
self.y = y | |
def __str__(self): | |
return "({}, {})".format(self.x, self.y) | |
def face_number_and_angle_detection(input_image): | |
""" | |
本函数的功能是利用机器学习算法计算图像中人脸的数目与关键点,并通过关键点信息来计算人脸在平面上的旋转角度。 | |
当前人脸数目!=1时,将raise一个错误信息并终止全部程序。 | |
Args: | |
input_image: numpy.array(3 channels),用户上传的原图(经过了一些简单的resize) | |
Returns: | |
- dets: list,人脸定位信息(x1, y1, x2, y2) | |
- rotation: int,旋转角度,正数代表逆时针偏离,负数代表顺时针偏离 | |
- landmark: list,人脸关键点信息 | |
""" | |
# face++人脸检测 | |
# input_image_bytes = CV2Bytes.cv2_byte(input_image, ".jpg") | |
# face_num, face_rectangle, landmarks, headpose = megvii_face_detector(input_image_bytes) | |
# print(face_rectangle) | |
faces, landmarks = face_detect_mtcnn(input_image) | |
face_num = len(faces) | |
# 排除不合人脸数目要求(必须是1)的照片 | |
if face_num == 0 or face_num >= 2: | |
if face_num == 0: | |
status_id_ = "1101" | |
else: | |
status_id_ = "1102" | |
raise IDError(f"人脸检测出错!检测出了{face_num}张人脸", face_num=face_num, status_id=status_id_) | |
# 获得人脸定位坐标 | |
face_rectangle = [] | |
for iter, (x1, y1, x2, y2, _) in enumerate(faces): | |
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) | |
face_rectangle.append({'top': x1, 'left': y1, 'width': x2 - x1, 'height': y2 - y1}) | |
# 获取人脸定位坐标与关键点信息 | |
dets = face_rectangle[0] | |
# landmark = landmarks[0] | |
# | |
# # 人脸旋转角度计算 | |
# rotation = eulerZ(landmark) | |
# return dets, rotation, landmark | |
return dets | |
def image_matting(input_image, params): | |
""" | |
本函数的功能为全局人像抠图。 | |
Args: | |
- input_image: numpy.array(3 channels),用户原图 | |
Returns: | |
- origin_png_image: numpy.array(4 channels), 抠好的图 | |
""" | |
print("抠图采用本地模型") | |
origin_png_image = get_modnet_matting(input_image, sess=params["modnet"]["human_sess"]) | |
origin_png_image = hollowOutFix(origin_png_image) # 抠图洞洞修补 | |
return origin_png_image | |
def rotation_ajust(input_image, rotation, a, IS_DEBUG=False): | |
""" | |
本函数的功能是根据旋转角对原图进行无损旋转,并返回结果图与附带信息。 | |
Args: | |
- input_image: numpy.array(3 channels), 用户上传的原图(经过了一些简单的resize、美颜) | |
- rotation: float, 人的五官偏离"端正"形态的旋转角 | |
- a: numpy.array(1 channel), matting图的matte | |
- IS_DEBUG: DEBUG模式开关 | |
Returns: | |
- result_jpg_image: numpy.array(3 channels), 原图旋转的结果图 | |
- result_png_image: numpy.array(4 channels), matting图旋转的结果图 | |
- L1: CLassObject, 根据旋转点连线所构造函数 | |
- L2: ClassObject, 根据旋转点连线所构造函数 | |
- dotL3: ClassObject, 一个特殊裁切点的坐标 | |
- clockwise: int, 表示照片是顺时针偏离还是逆时针偏离 | |
- drawed_dots_image: numpy.array(3 channels), 在result_jpg_image上标定了4个旋转点的结果图,用于DEBUG模式 | |
""" | |
# Step1. 数据准备 | |
rotation = -1 * rotation # rotation为正数->原图顺时针偏离,为负数->逆时针偏离 | |
h, w = input_image.copy().shape[:2] | |
# Step2. 无损旋转 | |
result_jpg_image, result_png_image, cos, sin = rotate_bound_4channels(input_image, a, rotation) | |
# Step3. 附带信息计算 | |
nh, nw = result_jpg_image.shape[:2] # 旋转后的新的长宽 | |
clockwise = -1 if rotation < 0 else 1 # clockwise代表时针,即1为顺时针,-1为逆时针 | |
# 如果逆时针偏离: | |
if rotation < 0: | |
p1 = Coordinate(0, int(w * sin)) | |
p2 = Coordinate(int(w * cos), 0) | |
p3 = Coordinate(nw, int(h * cos)) | |
p4 = Coordinate(int(h * sin), nh) | |
L1 = LinearFunction_TwoDots(p1, p4) | |
L2 = LinearFunction_TwoDots(p4, p3) | |
dotL3 = Coordinate(int(0.25 * p2.x + 0.75 * p3.x), int(0.25 * p2.y + 0.75 * p3.y)) | |
# 如果顺时针偏离: | |
else: | |
p1 = Coordinate(int(h * sin), 0) | |
p2 = Coordinate(nw, int(w * sin)) | |
p3 = Coordinate(int(w * cos), nh) | |
p4 = Coordinate(0, int(h * cos)) | |
L1 = LinearFunction_TwoDots(p4, p3) | |
L2 = LinearFunction_TwoDots(p3, p2) | |
dotL3 = Coordinate(int(0.75 * p4.x + 0.25 * p1.x), int(0.75 * p4.y + 0.25 * p1.y)) | |
# Step4. 根据附带信息进行图像绘制(4个旋转点),便于DEBUG模式验证 | |
drawed_dots_image = draw_picture_dots(result_jpg_image, [(p1.x, p1.y), (p2.x, p2.y), (p3.x, p3.y), | |
(p4.x, p4.y), (dotL3.x, dotL3.y)]) | |
if IS_DEBUG: | |
testImages.append(["drawed_dots_image", drawed_dots_image]) | |
return result_jpg_image, result_png_image, L1, L2, dotL3, clockwise, drawed_dots_image | |
def face_number_detection_mtcnn(input_image): | |
""" | |
本函数的功能是对旋转矫正的结果图进行基于MTCNN模型的人脸检测。 | |
Args: | |
- input_image: numpy.array(3 channels), 旋转矫正(rotation_adjust)的3通道结果图 | |
Returns: | |
- faces: list, 人脸检测的结果,包含人脸位置信息 | |
""" | |
# 如果图像的长或宽>1500px,则对图像进行1/2的resize再做MTCNN人脸检测,以加快处理速度 | |
if max(input_image.shape[0], input_image.shape[1]) >= 1500: | |
input_image_resize = cv2.resize(input_image, | |
(input_image.shape[1] // 2, input_image.shape[0] // 2), | |
interpolation=cv2.INTER_AREA) | |
faces, _ = face_detect_mtcnn(input_image_resize, filter=True) # MTCNN人脸检测 | |
# 如果缩放后图像的MTCNN人脸数目检测结果等于1->两次人脸检测结果没有偏差,则对定位数据x2 | |
if len(faces) == 1: | |
for item, param in enumerate(faces[0]): | |
faces[0][item] = param * 2 | |
# 如果两次人脸检测结果有偏差,则默认缩放后图像的MTCNN检测存在误差,则将原图输入再做一次MTCNN(保险措施) | |
else: | |
faces, _ = face_detect_mtcnn(input_image, filter=True) | |
# 如果图像的长或宽<1500px,则直接进行MTCNN检测 | |
else: | |
faces, _ = face_detect_mtcnn(input_image, filter=True) | |
return faces | |
def cutting_rect_pan(x1, y1, x2, y2, width, height, L1, L2, L3, clockwise, standard_size): | |
""" | |
本函数的功能是对旋转矫正结果图的裁剪框进行修正 ———— 解决"旋转三角形"现象。 | |
Args: | |
- x1: int, 裁剪框左上角的横坐标 | |
- y1: int, 裁剪框左上角的纵坐标 | |
- x2: int, 裁剪框右下角的横坐标 | |
- y2: int, 裁剪框右下角的纵坐标 | |
- width: int, 待裁剪图的宽度 | |
- height:int, 待裁剪图的高度 | |
- L1: CLassObject, 根据旋转点连线所构造函数 | |
- L2: CLassObject, 根据旋转点连线所构造函数 | |
- L3: ClassObject, 一个特殊裁切点的坐标 | |
- clockwise: int, 旋转时针状态 | |
- standard_size: tuple, 标准照的尺寸 | |
Returns: | |
- x1: int, 新的裁剪框左上角的横坐标 | |
- y1: int, 新的裁剪框左上角的纵坐标 | |
- x2: int, 新的裁剪框右下角的横坐标 | |
- y2: int, 新的裁剪框右下角的纵坐标 | |
- x_bias: int, 裁剪框横坐标方向上的计算偏置量 | |
- y_bias: int, 裁剪框纵坐标方向上的计算偏置量 | |
""" | |
# 用于计算的裁剪框坐标x1_cal,x2_cal,y1_cal,y2_cal(如果裁剪框超出了图像范围,则缩小直至在范围内) | |
x1_std = x1 if x1 > 0 else 0 | |
x2_std = x2 if x2 < width else width | |
# y1_std = y1 if y1 > 0 else 0 | |
y2_std = y2 if y2 < height else height | |
# 初始化x和y的计算偏置项x_bias和y_bias | |
x_bias = 0 | |
y_bias = 0 | |
# 如果顺时针偏转 | |
if clockwise == 1: | |
if y2 > L1.forward_x(x1_std): | |
y_bias = int(-(y2_std - L1.forward_x(x1_std))) | |
if y2 > L2.forward_x(x2_std): | |
x_bias = int(-(x2_std - L2.forward_y(y2_std))) | |
x2 = x2_std + x_bias | |
if x1 < L3.x: | |
x1 = L3.x | |
# 如果逆时针偏转 | |
else: | |
if y2 > L1.forward_x(x1_std): | |
x_bias = int(L1.forward_y(y2_std) - x1_std) | |
if y2 > L2.forward_x(x2_std): | |
y_bias = int(-(y2_std - L2.forward_x(x2_std))) | |
x1 = x1_std + x_bias | |
if x2 > L3.x: | |
x2 = L3.x | |
# 计算裁剪框的y的变化 | |
y2 = int(y2_std + y_bias) | |
new_cut_width = x2 - x1 | |
new_cut_height = int(new_cut_width / standard_size[1] * standard_size[0]) | |
y1 = y2 - new_cut_height | |
return x1, y1, x2, y2, x_bias, y_bias | |
def idphoto_cutting(faces, head_measure_ratio, standard_size, head_height_ratio, origin_png_image, origin_png_image_pre, | |
rotation_params, align=False, IS_DEBUG=False, top_distance_max=0.12, top_distance_min=0.10): | |
""" | |
本函数的功能为进行证件照的自适应裁剪,自适应依据Setting.json的控制参数,以及输入图像的自身情况。 | |
Args: | |
- faces: list, 人脸位置信息 | |
- head_measure_ratio: float, 人脸面积与全图面积的期望比值 | |
- standard_size: tuple, 标准照尺寸, 如(413, 295) | |
- head_height_ratio: float, 人脸中心处在全图高度的比例期望值 | |
- origin_png_image: numpy.array(4 channels), 经过一系列转换后的用户输入图 | |
- origin_png_image_pre:numpy.array(4 channels),经过一系列转换(但没有做旋转矫正)的用户输入图 | |
- rotation_params:旋转参数字典 | |
- L1: classObject, 来自rotation_ajust的L1线性函数 | |
- L2: classObject, 来自rotation_ajust的L2线性函数 | |
- L3: classObject, 来自rotation_ajust的dotL3点 | |
- clockwise: int, (顺/逆)时针偏差 | |
- drawed_image: numpy.array, 红点标定4个旋转点的图像 | |
- align: bool, 是否图像做过旋转矫正 | |
- IS_DEBUG: DEBUG模式开关 | |
- top_distance_max: float, 头距离顶部的最大比例 | |
- top_distance_min: float, 头距离顶部的最小比例 | |
Returns: | |
- result_image_hd: numpy.array(4 channels), 高清照 | |
- result_image_standard: numpy.array(4 channels), 标准照 | |
- clothing_params: json, 换装配置参数,便于后续换装功能的使用 | |
""" | |
# Step0. 旋转参数准备 | |
L1 = rotation_params["L1"] | |
L2 = rotation_params["L2"] | |
L3 = rotation_params["L3"] | |
clockwise = rotation_params["clockwise"] | |
drawed_image = rotation_params["drawed_image"] | |
# Step1. 准备人脸参数 | |
face_rect = faces[0] | |
x, y = face_rect[0], face_rect[1] | |
w, h = face_rect[2] - x + 1, face_rect[3] - y + 1 | |
height, width = origin_png_image.shape[:2] | |
width_height_ratio = standard_size[0] / standard_size[1] # 高宽比 | |
# Step2. 计算高级参数 | |
face_center = (x + w / 2, y + h / 2) # 面部中心坐标 | |
face_measure = w * h # 面部面积 | |
crop_measure = face_measure / head_measure_ratio # 裁剪框面积:为面部面积的5倍 | |
resize_ratio = crop_measure / (standard_size[0] * standard_size[1]) # 裁剪框缩放率 | |
resize_ratio_single = math.sqrt(resize_ratio) # 长和宽的缩放率(resize_ratio的开方) | |
crop_size = (int(standard_size[0] * resize_ratio_single), | |
int(standard_size[1] * resize_ratio_single)) # 裁剪框大小 | |
# 裁剪框的定位信息 | |
x1 = int(face_center[0] - crop_size[1] / 2) | |
y1 = int(face_center[1] - crop_size[0] * head_height_ratio) | |
y2 = y1 + crop_size[0] | |
x2 = x1 + crop_size[1] | |
# Step3. 对于旋转矫正图片的裁切处理 | |
# if align: | |
# y_top_pre, _, _, _ = get_box_pro(origin_png_image.astype(np.uint8), model=2, | |
# correction_factor=0) # 获取matting结果图的顶距 | |
# # 裁剪参数重新计算,目标是以最小的图像损失来消除"旋转三角形" | |
# x1, y1, x2, y2, x_bias, y_bias = cutting_rect_pan(x1, y1, x2, y2, width, height, L1, L2, L3, clockwise, | |
# standard_size) | |
# # 这里设定一个拒绝判定条件,如果裁剪框切进了人脸检测框的话,就不进行旋转 | |
# if y1 > y_top_pre: | |
# y2 = y2 - (y1 - y_top_pre) | |
# y1 = y_top_pre | |
# # 如何遇到裁剪到人脸的情况,则转为不旋转裁切 | |
# if x1 > x or x2 < (x + w) or y1 > y or y2 < (y + h): | |
# return idphoto_cutting(faces, head_measure_ratio, standard_size, head_height_ratio, origin_png_image_pre, | |
# origin_png_image_pre, rotation_params, align=False, IS_DEBUG=False) | |
# | |
# if y_bias != 0: | |
# origin_png_image = origin_png_image[:y2, :] | |
# if x_bias > 0: # 逆时针 | |
# origin_png_image = origin_png_image[:, x1:] | |
# if drawed_image is not None and IS_DEBUG: | |
# drawed_x = x1 | |
# x = x - x1 | |
# x2 = x2 - x1 | |
# x1 = 0 | |
# else: # 顺时针 | |
# origin_png_image = origin_png_image[:, :x2] | |
# | |
# if drawed_image is not None and IS_DEBUG: | |
# drawed_x = drawed_x if x_bias > 0 else 0 | |
# drawed_image = draw_picture_dots(drawed_image, [(x1 + drawed_x, y1), (x1 + drawed_x, y2), | |
# (x2 + drawed_x, y1), (x2 + drawed_x, y2)], | |
# pen_color=(255, 0, 0)) | |
# testImages.append(["drawed_image", drawed_image]) | |
# Step4. 对照片的第一轮裁剪 | |
cut_image = IDphotos_cut(x1, y1, x2, y2, origin_png_image) | |
cut_image = cv2.resize(cut_image, (crop_size[1], crop_size[0])) | |
y_top, y_bottom, x_left, x_right = get_box_pro(cut_image.astype(np.uint8), model=2, | |
correction_factor=0) # 得到cut_image中人像的上下左右距离信息 | |
if IS_DEBUG: | |
testImages.append(["firstCut", cut_image]) | |
# Step5. 判定cut_image中的人像是否处于合理的位置,若不合理,则处理数据以便之后调整位置 | |
# 检测人像与裁剪框左边或右边是否存在空隙 | |
if x_left > 0 or x_right > 0: | |
status_left_right = 1 | |
cut_value_top = int(((x_left + x_right) * width_height_ratio) / 2) # 减去左右,为了保持比例,上下也要相应减少cut_value_top | |
else: | |
status_left_right = 0 | |
cut_value_top = 0 | |
""" | |
检测人头顶与照片的顶部是否在合适的距离内: | |
- status==0: 距离合适, 无需移动 | |
- status=1: 距离过大, 人像应向上移动 | |
- status=2: 距离过小, 人像应向下移动 | |
""" | |
status_top, move_value = detect_distance(y_top - cut_value_top, crop_size[0], max=top_distance_max, | |
min=top_distance_min) | |
# Step6. 对照片的第二轮裁剪 | |
if status_left_right == 0 and status_top == 0: | |
result_image = cut_image | |
else: | |
result_image = IDphotos_cut(x1 + x_left, | |
y1 + cut_value_top + status_top * move_value, | |
x2 - x_right, | |
y2 - cut_value_top + status_top * move_value, | |
origin_png_image) | |
if IS_DEBUG: | |
testImages.append(["result_image_pre", result_image]) | |
# 换装参数准备 | |
relative_x = x - (x1 + x_left) | |
relative_y = y - (y1 + cut_value_top + status_top * move_value) | |
# Step7. 当照片底部存在空隙时,下拉至底部 | |
result_image, y_high = move(result_image.astype(np.uint8)) | |
relative_y = relative_y + y_high # 更新换装参数 | |
# cv2.imwrite("./temp_image.png", result_image) | |
# Step8. 标准照与高清照转换 | |
result_image_standard = standard_photo_resize(result_image, standard_size) | |
result_image_hd, resize_ratio_max = resize_image_by_min(result_image, esp=max(600, standard_size[1])) | |
# Step9. 参数准备-为换装服务 | |
clothing_params = { | |
"relative_x": relative_x * resize_ratio_max, | |
"relative_y": relative_y * resize_ratio_max, | |
"w": w * resize_ratio_max, | |
"h": h * resize_ratio_max | |
} | |
return result_image_hd, result_image_standard, clothing_params | |
def debug_mode_process(testImages): | |
for item, (text, imageItem) in enumerate(testImages): | |
channel = imageItem.shape[2] | |
(height, width) = imageItem.shape[:2] | |
if channel == 4: | |
imageItem = add_background(imageItem, bgr=(255, 255, 255)) | |
imageItem = np.uint8(imageItem) | |
if item == 0: | |
testHeight = height | |
result_image_test = imageItem | |
result_image_test = cv2.putText(result_image_test, text, (50, 50), cv2.FONT_HERSHEY_COMPLEX, 1.0, | |
(200, 100, 100), 3) | |
else: | |
imageItem = cv2.resize(imageItem, (int(width * testHeight / height), testHeight)) | |
imageItem = cv2.putText(imageItem, text, (50, 50), cv2.FONT_HERSHEY_COMPLEX, 1.0, (200, 100, 100), | |
3) | |
result_image_test = cv2.hconcat([result_image_test, imageItem]) | |
if item == len(testImages) - 1: | |
return result_image_test | |
def IDphotos_create(input_image, | |
mode="ID", | |
size=(413, 295), | |
head_measure_ratio=0.2, | |
head_height_ratio=0.45, | |
align=False, | |
beauty=True, | |
fd68=None, | |
human_sess=None, | |
IS_DEBUG=False, | |
top_distance_max=0.12, | |
top_distance_min=0.10): | |
""" | |
证件照制作主函数 | |
Args: | |
input_image: 输入图像矩阵 | |
size: (h, w) | |
head_measure_ratio: 头部占比? | |
head_height_ratio: 头部高度占比? | |
align: 是否进行人脸矫正(roll),默认为True(是) | |
fd68: 人脸68关键点检测类,详情参见hycv.FaceDetection68.faceDetection68 | |
human_sess: 人像抠图模型类,由onnx载入(不与下面两个参数连用) | |
oss_image_name: 阿里云api需要的参数,实际上是上传到oss的路径 | |
user: 阿里云api的accessKey配置对象 | |
top_distance_max: float, 头距离顶部的最大比例 | |
top_distance_min: float, 头距离顶部的最小比例 | |
Returns: | |
result_image(高清版), result_image(普清版), api请求日志, | |
排版照参数(list),排版照是否旋转参数,照片尺寸(x, y) | |
在函数不出错的情况下,函数会因为一些原因主动抛出异常: | |
1. 无人脸(或者只有半张,dlib无法检测出来),抛出IDError异常,内部参数face_num为0 | |
2. 人脸数量超过1,抛出IDError异常,内部参数face_num为2 | |
3. 抠图api请求失败,抛出IDError异常,内部参数face_num为-1 | |
""" | |
# Step0. 数据准备/图像预处理 | |
matting_params = {"modnet": {"human_sess": human_sess}} | |
rotation_params = {"L1": None, "L2": None, "L3": None, "clockwise": None, "drawed_image": None} | |
input_image = resize_image_esp(input_image, 2000) # 将输入图片resize到最大边长为2000 | |
# Step1. 人脸检测 | |
# dets, rotation, landmark = face_number_and_angle_detection(input_image) | |
# dets = face_number_and_angle_detection(input_image) | |
# Step2. 美颜 | |
# if beauty: | |
# input_image = makeBeautiful(input_image, landmark, 2, 2, 5, 4) | |
# Step3. 抠图 | |
origin_png_image = image_matting(input_image, matting_params) | |
if mode == "只换底": | |
return origin_png_image, origin_png_image, None, None, None, None, None, None, 1 | |
origin_png_image_pre = origin_png_image.copy() # 备份一下现在抠图结果图,之后在iphoto_cutting函数有用 | |
# Step4. 旋转矫正 | |
# 如果旋转角不大于2, 则不做旋转 | |
# if abs(rotation) <= 2: | |
# align = False | |
# # 否则,进行旋转矫正 | |
# if align: | |
# input_image_candidate, origin_png_image_candidate, L1, L2, L3, clockwise, drawed_image \ | |
# = rotation_ajust(input_image, rotation, cv2.split(origin_png_image)[-1], IS_DEBUG=IS_DEBUG) # 图像旋转 | |
# | |
# origin_png_image_pre = origin_png_image.copy() | |
# input_image = input_image_candidate.copy() | |
# origin_png_image = origin_png_image_candidate.copy() | |
# | |
# rotation_params["L1"] = L1 | |
# rotation_params["L2"] = L2 | |
# rotation_params["L3"] = L3 | |
# rotation_params["clockwise"] = clockwise | |
# rotation_params["drawed_image"] = drawed_image | |
# Step5. MTCNN人脸检测 | |
faces = face_number_detection_mtcnn(input_image) | |
# Step6. 证件照自适应裁剪 | |
face_num = len(faces) | |
# 报错MTCNN检测结果不等于1的图片 | |
if face_num != 1: | |
return None, None, None, None, None, None, None, None, 0 | |
# 符合条件的进入下一环 | |
else: | |
result_image_hd, result_image_standard, clothing_params = \ | |
idphoto_cutting(faces, head_measure_ratio, size, head_height_ratio, origin_png_image, | |
origin_png_image_pre, rotation_params, align=align, IS_DEBUG=IS_DEBUG, | |
top_distance_max=top_distance_max, top_distance_min=top_distance_min) | |
# Step7. 排版照参数获取 | |
typography_arr, typography_rotate = generate_layout_photo(input_height=size[0], input_width=size[1]) | |
return result_image_hd, result_image_standard, typography_arr, typography_rotate, \ | |
clothing_params["relative_x"], clothing_params["relative_y"], clothing_params["w"], clothing_params["h"], 1 | |
if __name__ == "__main__": | |
HY_HUMAN_MATTING_WEIGHTS_PATH = "./hivision_modnet.onnx" | |
sess = onnxruntime.InferenceSession(HY_HUMAN_MATTING_WEIGHTS_PATH) | |
input_image = cv2.imread("test.jpg") | |
result_image_hd, result_image_standard, typography_arr, typography_rotate, \ | |
_, _, _, _, _ = IDphotos_create(input_image, | |
size=(413, 295), | |
head_measure_ratio=0.2, | |
head_height_ratio=0.45, | |
align=True, | |
beauty=True, | |
fd68=None, | |
human_sess=sess, | |
oss_image_name="test_tmping.jpg", | |
user=None, | |
IS_DEBUG=False, | |
top_distance_max=0.12, | |
top_distance_min=0.10) | |
cv2.imwrite("result_image_hd.png", result_image_hd) | |