File size: 5,775 Bytes
6a83074
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
import torch
import torch.nn as nn

from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig


class CLIPVisionTower(nn.Module):
    def __init__(self, vision_tower, args, delay_load=False):
        super().__init__()

        self.is_loaded = False

        self.vision_tower_name = vision_tower
        self.select_layer = args.mm_vision_select_layer
        self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch')

        if not delay_load:
            self.load_model()
        elif getattr(args, 'unfreeze_mm_vision_tower', False):
            self.load_model()
        else:
            self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name)

    def load_model(self, device_map=None):
        if self.is_loaded:
            print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name))
            return

        self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name)
        self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name, device_map=device_map)
        self.vision_tower.requires_grad_(False)

        self.is_loaded = True

    def feature_select(self, image_forward_outs):
        image_features = image_forward_outs.hidden_states[self.select_layer]
        if self.select_feature == 'patch':
            image_features = image_features[:, 1:]
        elif self.select_feature == 'cls_patch':
            image_features = image_features
        else:
            raise ValueError(f'Unexpected select feature: {self.select_feature}')
        return image_features

    @torch.no_grad()
    def forward(self, images):
        if type(images) is list:
            image_features = []
            for image in images:
                image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True)
                image_feature = self.feature_select(image_forward_out).to(image.dtype)
                image_features.append(image_feature)
        else:
            image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
            image_features = self.feature_select(image_forward_outs).to(images.dtype)

        return image_features

    @property
    def dummy_feature(self):
        return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)

    @property
    def dtype(self):
        return self.vision_tower.dtype

    @property
    def device(self):
        return self.vision_tower.device

    @property
    def config(self):
        if self.is_loaded:
            return self.vision_tower.config
        else:
            return self.cfg_only

    @property
    def hidden_size(self):
        return self.config.hidden_size

    @property
    def num_patches_per_side(self):
        return self.config.image_size // self.config.patch_size

    @property
    def num_patches(self):
        return (self.config.image_size // self.config.patch_size) ** 2



class CLIPVisionTowerS2(CLIPVisionTower):
    def __init__(self, vision_tower, args, delay_load=False):
        super().__init__(vision_tower, args, delay_load)

        self.s2_scales = getattr(args, 's2_scales', '336,672,1008')
        self.s2_scales = list(map(int, self.s2_scales.split(',')))
        self.s2_scales.sort()
        self.s2_split_size = self.s2_scales[0]
        self.s2_image_size = self.s2_scales[-1]

        try:
            from s2wrapper import forward as multiscale_forward
        except ImportError:
            raise ImportError('Package s2wrapper not found! Please install by running: \npip install git+https://github.com/bfshi/scaling_on_scales.git')
        self.multiscale_forward = multiscale_forward

        # change resize/crop size in preprocessing to the largest image size in s2_scale
        if not delay_load or getattr(args, 'unfreeze_mm_vision_tower', False):
            self.image_processor.size['shortest_edge'] = self.s2_image_size
            self.image_processor.crop_size['height'] = self.image_processor.crop_size['width'] = self.s2_image_size

    def load_model(self, device_map=None):
        if self.is_loaded:
            print('{} is already loaded, `load_model` called again, skipping.'.format(self.vision_tower_name))
            return

        self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name)
        self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name, device_map=device_map)
        self.vision_tower.requires_grad_(False)

        self.image_processor.size['shortest_edge'] = self.s2_image_size
        self.image_processor.crop_size['height'] = self.image_processor.crop_size['width'] = self.s2_image_size

        self.is_loaded = True

    @torch.no_grad()
    def forward_feature(self, images):
        image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True)
        image_features = self.feature_select(image_forward_outs).to(images.dtype)
        return image_features

    @torch.no_grad()
    def forward(self, images):
        if type(images) is list:
            image_features = []
            for image in images:
                image_feature = self.multiscale_forward(self.forward_feature, image.unsqueeze(0), img_sizes=self.s2_scales, max_split_size=self.s2_split_size)
                image_features.append(image_feature)
        else:
            image_features = self.multiscale_forward(self.forward_feature, images, img_sizes=self.s2_scales, max_split_size=self.s2_split_size)

        return image_features

    @property
    def hidden_size(self):
        return self.config.hidden_size * len(self.s2_scales)