Spaces:
Running
on
Zero
Running
on
Zero
File size: 86,376 Bytes
18bba3b d05f120 0b7a138 18bba3b 7cfb6ba 18bba3b b59e4a9 18bba3b aa7549b 18bba3b aa7549b 18bba3b aa7549b 18bba3b aa7549b 18bba3b 56e6382 18bba3b e746770 18bba3b d15bf21 18bba3b 7cfb6ba 18bba3b 7cfb6ba 18bba3b 14f691b 918eccb 14f691b cbf0849 18bba3b 14f691b 18bba3b 14f691b 18bba3b 14f691b 18bba3b 6e75798 1cf402f 18bba3b 14f691b 18bba3b 3369e4e 18bba3b 14f691b 18bba3b 7cfb6ba 18bba3b 7cfb6ba 18bba3b 7cfb6ba 18bba3b 7cfb6ba 18bba3b 22378df 18bba3b 5e72fdf 18bba3b 7cfb6ba 18bba3b 14f691b 18bba3b 7cfb6ba 18bba3b 7cfb6ba 8ae77df 18bba3b 14f691b 18bba3b 2afc955 18bba3b 7cfb6ba 18bba3b 7cfb6ba 18bba3b 14f691b 18bba3b 14f691b 18bba3b 14f691b 18bba3b 7cfb6ba 18bba3b 14f691b 18bba3b 7cfb6ba 18bba3b 94d97f2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 |
import subprocess, torch, os, traceback, sys, warnings, shutil, numpy as np
from mega import Mega
os.environ["no_proxy"] = "localhost, 127.0.0.1, ::1"
import threading
from time import sleep
from subprocess import Popen
import faiss
import spaces
from random import shuffle
import json, datetime, requests
from gtts import gTTS
now_dir = os.getcwd()
sys.path.append(now_dir)
tmp = os.path.join(now_dir, "TEMP")
shutil.rmtree(tmp, ignore_errors=True)
shutil.rmtree("%s/runtime/Lib/site-packages/infer_pack" % (now_dir), ignore_errors=True)
os.makedirs(tmp, exist_ok=True)
os.makedirs(os.path.join(now_dir, "logs"), exist_ok=True)
os.makedirs(os.path.join(now_dir, "weights"), exist_ok=True)
os.environ["TEMP"] = tmp
warnings.filterwarnings("ignore")
torch.manual_seed(114514)
from i18n import I18nAuto
import edge_tts, asyncio
from ilariatts import tts_order_voice
language_dict = tts_order_voice
ilariavoices = language_dict.keys()
import signal
import math
from utils import load_audio, CSVutil
global DoFormant, Quefrency, Timbre
if not os.path.isdir('csvdb/'):
os.makedirs('csvdb')
frmnt, stp = open("csvdb/formanting.csv", 'w'), open("csvdb/stop.csv", 'w')
frmnt.close()
stp.close()
try:
DoFormant, Quefrency, Timbre = CSVutil('csvdb/formanting.csv', 'r', 'formanting')
DoFormant = (
lambda DoFormant: True if DoFormant.lower() == 'true' else (False if DoFormant.lower() == 'false' else DoFormant)
)(DoFormant)
except (ValueError, TypeError, IndexError):
DoFormant, Quefrency, Timbre = False, 1.0, 1.0
CSVutil('csvdb/formanting.csv', 'w+', 'formanting', DoFormant, Quefrency, Timbre)
def download_models():
# Download hubert base model if not present
if not os.path.isfile('./hubert_base.pt'):
response = requests.get('https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/hubert_base.pt')
if response.status_code == 200:
with open('./hubert_base.pt', 'wb') as f:
f.write(response.content)
print("Downloaded hubert base model file successfully. File saved to ./hubert_base.pt.")
else:
raise Exception("Failed to download hubert base model file. Status code: " + str(response.status_code) + ".")
# Download rmvpe model if not present
if not os.path.isfile('./rmvpe.pt'):
response = requests.get('https://huggingface.co/lj1995/VoiceConversionWebUI/resolve/main/rmvpe.pt?download=true')
if response.status_code == 200:
with open('./rmvpe.pt', 'wb') as f:
f.write(response.content)
print("Downloaded rmvpe model file successfully. File saved to ./rmvpe.pt.")
else:
raise Exception("Failed to download rmvpe model file. Status code: " + str(response.status_code) + ".")
download_models()
print("\n-------------------------------\nRVC v2 Easy GUI (Local Edition)\n-------------------------------\n")
def formant_apply(qfrency, tmbre):
Quefrency = qfrency
Timbre = tmbre
DoFormant = True
CSVutil('csvdb/formanting.csv', 'w+', 'formanting', DoFormant, qfrency, tmbre)
return ({"value": Quefrency, "__type__": "update"}, {"value": Timbre, "__type__": "update"})
def get_fshift_presets():
fshift_presets_list = []
for dirpath, _, filenames in os.walk("./formantshiftcfg/"):
for filename in filenames:
if filename.endswith(".txt"):
fshift_presets_list.append(os.path.join(dirpath,filename).replace('\\','/'))
if len(fshift_presets_list) > 0:
return fshift_presets_list
else:
return ''
def formant_enabled(cbox, qfrency, tmbre, frmntapply, formantpreset, formant_refresh_button):
if (cbox):
DoFormant = True
CSVutil('csvdb/formanting.csv', 'w+', 'formanting', DoFormant, qfrency, tmbre)
#print(f"is checked? - {cbox}\ngot {DoFormant}")
return (
{"value": True, "__type__": "update"},
{"visible": True, "__type__": "update"},
{"visible": True, "__type__": "update"},
{"visible": True, "__type__": "update"},
{"visible": True, "__type__": "update"},
{"visible": True, "__type__": "update"},
)
else:
DoFormant = False
CSVutil('csvdb/formanting.csv', 'w+', 'formanting', DoFormant, qfrency, tmbre)
#print(f"is checked? - {cbox}\ngot {DoFormant}")
return (
{"value": False, "__type__": "update"},
{"visible": False, "__type__": "update"},
{"visible": False, "__type__": "update"},
{"visible": False, "__type__": "update"},
{"visible": False, "__type__": "update"},
{"visible": False, "__type__": "update"},
{"visible": False, "__type__": "update"},
)
def preset_apply(preset, qfer, tmbr):
if str(preset) != '':
with open(str(preset), 'r') as p:
content = p.readlines()
qfer, tmbr = content[0].split('\n')[0], content[1]
formant_apply(qfer, tmbr)
else:
pass
return ({"value": qfer, "__type__": "update"}, {"value": tmbr, "__type__": "update"})
def update_fshift_presets(preset, qfrency, tmbre):
qfrency, tmbre = preset_apply(preset, qfrency, tmbre)
if (str(preset) != ''):
with open(str(preset), 'r') as p:
content = p.readlines()
qfrency, tmbre = content[0].split('\n')[0], content[1]
formant_apply(qfrency, tmbre)
else:
pass
return (
{"choices": get_fshift_presets(), "__type__": "update"},
{"value": qfrency, "__type__": "update"},
{"value": tmbre, "__type__": "update"},
)
i18n = I18nAuto()
#i18n.print()
# 判断是否有能用来训练和加速推理的N卡
ngpu = torch.cuda.device_count()
gpu_infos = []
mem = []
if (not torch.cuda.is_available()) or ngpu == 0:
if_gpu_ok = False
else:
if_gpu_ok = False
for i in range(ngpu):
gpu_name = torch.cuda.get_device_name(i)
if (
"10" in gpu_name
or "16" in gpu_name
or "20" in gpu_name
or "30" in gpu_name
or "40" in gpu_name
or "A2" in gpu_name.upper()
or "A3" in gpu_name.upper()
or "A4" in gpu_name.upper()
or "P4" in gpu_name.upper()
or "A50" in gpu_name.upper()
or "A60" in gpu_name.upper()
or "70" in gpu_name
or "80" in gpu_name
or "90" in gpu_name
or "M4" in gpu_name.upper()
or "T4" in gpu_name.upper()
or "TITAN" in gpu_name.upper()
): # A10#A100#V100#A40#P40#M40#K80#A4500
if_gpu_ok = True # 至少有一张能用的N卡
gpu_infos.append("%s\t%s" % (i, gpu_name))
mem.append(
int(
torch.cuda.get_device_properties(i).total_memory
/ 1024
/ 1024
/ 1024
+ 0.4
)
)
if if_gpu_ok == True and len(gpu_infos) > 0:
gpu_info = "\n".join(gpu_infos)
default_batch_size = min(mem) // 2
else:
gpu_info = i18n("很遗憾您这没有能用的显卡来支持您训练")
default_batch_size = 1
gpus = "-".join([i[0] for i in gpu_infos])
from lib.infer_pack.models import (
SynthesizerTrnMs256NSFsid,
SynthesizerTrnMs256NSFsid_nono,
SynthesizerTrnMs768NSFsid,
SynthesizerTrnMs768NSFsid_nono,
)
import soundfile as sf
import gradio as gr
import logging
from vc_infer_pipeline import VC
from config import Config
import torch.nn as nn
import numpy as np
config = Config()
# from trainset_preprocess_pipeline import PreProcess
logging.getLogger("numba").setLevel(logging.WARNING)
class HuBERT(nn.Module):
def __init__(self, model_path):
super(HuBERT, self).__init__()
self.model = torch.hub.load('pytorch/fairseq', 'hubert_base') # should load without using hubert_base.pt, and without fairseq.
def extract_features(self, waveform):
return self.model.extract_features(waveform)
def load_hubert():
model_path = "hubert_base.pt" # Your model path
hubert_model = HuBERT(model_path)
return hubert_model
weight_root = "weights"
index_root = "logs"
names = []
for name in os.listdir(weight_root):
if name.endswith(".pth"):
names.append(name)
index_paths = []
for root, dirs, files in os.walk(index_root, topdown=False):
for name in files:
if name.endswith(".index") and "trained" not in name:
index_paths.append("%s/%s" % (root, name))
def vc_single(
sid,
input_audio_path,
f0_up_key,
f0_file,
f0_method,
file_index,
#file_index2,
# file_big_npy,
index_rate,
filter_radius,
resample_sr,
rms_mix_rate,
protect,
crepe_hop_length,
): # spk_item, input_audio0, vc_transform0,f0_file,f0method0
global tgt_sr, net_g, vc, hubert_model, version
if input_audio_path is None:
return "You need to upload an audio", None
f0_up_key = int(f0_up_key)
try:
audio = load_audio(input_audio_path, 16000, DoFormant, Quefrency, Timbre)
audio_max = np.abs(audio).max() / 0.95
if audio_max > 1:
audio /= audio_max
times = [0, 0, 0]
if hubert_model == None:
load_hubert()
if_f0 = cpt.get("f0", 1)
file_index = (
(
file_index.strip(" ")
.strip('"')
.strip("\n")
.strip('"')
.strip(" ")
.replace("trained", "added")
)
) # 防止小白写错,自动帮他替换掉
# file_big_npy = (
# file_big_npy.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
# )
audio_opt = vc.pipeline(
hubert_model,
net_g,
sid,
audio,
input_audio_path,
times,
f0_up_key,
f0_method,
file_index,
# file_big_npy,
index_rate,
if_f0,
filter_radius,
tgt_sr,
resample_sr,
rms_mix_rate,
version,
protect,
crepe_hop_length,
f0_file=f0_file,
)
if resample_sr >= 16000 and tgt_sr != resample_sr:
tgt_sr = resample_sr
index_info = (
"Using index:%s." % file_index
if os.path.exists(file_index)
else "Index not used."
)
return "Success.\n %s\nTime:\n npy:%ss, f0:%ss, infer:%ss" % (
index_info,
times[0],
times[1],
times[2],
), (tgt_sr, audio_opt)
except:
info = traceback.format_exc()
print(info)
return info, (None, None)
@spaces.GPU(duration=60 * 2)
def vc_multi(
sid,
dir_path,
opt_root,
paths,
f0_up_key,
f0_method,
file_index,
file_index2,
# file_big_npy,
index_rate,
filter_radius,
resample_sr,
rms_mix_rate,
protect,
format1,
crepe_hop_length,
):
try:
dir_path = (
dir_path.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
) # 防止小白拷路径头尾带了空格和"和回车
opt_root = opt_root.strip(" ").strip('"').strip("\n").strip('"').strip(" ")
os.makedirs(opt_root, exist_ok=True)
try:
if dir_path != "":
paths = [os.path.join(dir_path, name) for name in os.listdir(dir_path)]
else:
paths = [path.name for path in paths]
except:
traceback.print_exc()
paths = [path.name for path in paths]
infos = []
for path in paths:
info, opt = vc_single(
sid,
path,
f0_up_key,
None,
f0_method,
file_index,
# file_big_npy,
index_rate,
filter_radius,
resample_sr,
rms_mix_rate,
protect,
crepe_hop_length
)
if "Success" in info:
try:
tgt_sr, audio_opt = opt
if format1 in ["wav", "flac"]:
sf.write(
"%s/%s.%s" % (opt_root, os.path.basename(path), format1),
audio_opt,
tgt_sr,
)
else:
path = "%s/%s.wav" % (opt_root, os.path.basename(path))
sf.write(
path,
audio_opt,
tgt_sr,
)
if os.path.exists(path):
os.system(
"ffmpeg -i %s -vn %s -q:a 2 -y"
% (path, path[:-4] + ".%s" % format1)
)
except:
info += traceback.format_exc()
infos.append("%s->%s" % (os.path.basename(path), info))
yield "\n".join(infos)
yield "\n".join(infos)
except:
yield traceback.format_exc()
# 一个选项卡全局只能有一个音色
def get_vc(sid):
global n_spk, tgt_sr, net_g, vc, cpt, version
if sid == "" or sid == []:
global hubert_model
if hubert_model != None: # 考虑到轮询, 需要加个判断看是否 sid 是由有模型切换到无模型的
print("clean_empty_cache")
del net_g, n_spk, vc, hubert_model, tgt_sr # ,cpt
hubert_model = net_g = n_spk = vc = hubert_model = tgt_sr = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
###楼下不这么折腾清理不干净
if_f0 = cpt.get("f0", 1)
version = cpt.get("version", "v1")
if version == "v1":
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(
*cpt["config"], is_half=config.is_half
)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
elif version == "v2":
if if_f0 == 1:
net_g = SynthesizerTrnMs768NSFsid(
*cpt["config"], is_half=config.is_half
)
else:
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
del net_g, cpt
if torch.cuda.is_available():
torch.cuda.empty_cache()
cpt = None
return {"visible": False, "__type__": "update"}
person = "%s/%s" % (weight_root, sid)
print("loading %s" % person)
cpt = torch.load(person, map_location="cpu")
tgt_sr = cpt["config"][-1]
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
if_f0 = cpt.get("f0", 1)
version = cpt.get("version", "v1")
if version == "v1":
if if_f0 == 1:
net_g = SynthesizerTrnMs256NSFsid(*cpt["config"], is_half=config.is_half)
else:
net_g = SynthesizerTrnMs256NSFsid_nono(*cpt["config"])
elif version == "v2":
if if_f0 == 1:
net_g = SynthesizerTrnMs768NSFsid(*cpt["config"], is_half=config.is_half)
else:
net_g = SynthesizerTrnMs768NSFsid_nono(*cpt["config"])
del net_g.enc_q
print(net_g.load_state_dict(cpt["weight"], strict=False))
net_g.eval().to(config.device)
if config.is_half:
net_g = net_g.half()
else:
net_g = net_g.float()
vc = VC(tgt_sr, config)
n_spk = cpt["config"][-3]
return {"visible": False, "maximum": n_spk, "__type__": "update"}
def change_choices():
names = []
for name in os.listdir(weight_root):
if name.endswith(".pth"):
names.append(name)
index_paths = []
for root, dirs, files in os.walk(index_root, topdown=False):
for name in files:
if name.endswith(".index") and "trained" not in name:
index_paths.append("%s/%s" % (root, name))
return {"choices": sorted(names), "__type__": "update"}, {
"choices": sorted(index_paths),
"__type__": "update",
}
def clean():
return {"value": "", "__type__": "update"}
sr_dict = {
"32k": 32000,
"40k": 40000,
"48k": 48000,
}
def if_done(done, p):
while 1:
if p.poll() == None:
sleep(0.5)
else:
break
done[0] = True
def if_done_multi(done, ps):
while 1:
# poll==None代表进程未结束
# 只要有一个进程未结束都不停
flag = 1
for p in ps:
if p.poll() == None:
flag = 0
sleep(0.5)
break
if flag == 1:
break
done[0] = True
def preprocess_dataset(trainset_dir, exp_dir, sr, n_p):
sr = sr_dict[sr]
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
f = open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "w")
f.close()
cmd = (
config.python_cmd
+ " trainset_preprocess_pipeline_print.py %s %s %s %s/logs/%s "
% (trainset_dir, sr, n_p, now_dir, exp_dir)
+ str(config.noparallel)
)
print(cmd)
p = Popen(cmd, shell=True) # , stdin=PIPE, stdout=PIPE,stderr=PIPE,cwd=now_dir
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
done = [False]
threading.Thread(
target=if_done,
args=(
done,
p,
),
).start()
while 1:
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
yield (f.read())
sleep(1)
if done[0] == True:
break
with open("%s/logs/%s/preprocess.log" % (now_dir, exp_dir), "r") as f:
log = f.read()
print(log)
yield log
# but2.click(extract_f0,[gpus6,np7,f0method8,if_f0_3,trainset_dir4],[info2])
def extract_f0_feature(gpus, n_p, f0method, if_f0, exp_dir, version19, echl):
gpus = gpus.split("-")
os.makedirs("%s/logs/%s" % (now_dir, exp_dir), exist_ok=True)
f = open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "w")
f.close()
if if_f0:
cmd = config.python_cmd + " extract_f0_print.py %s/logs/%s %s %s %s" % (
now_dir,
exp_dir,
n_p,
f0method,
echl,
)
print(cmd)
p = Popen(cmd, shell=True, cwd=now_dir) # , stdin=PIPE, stdout=PIPE,stderr=PIPE
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
done = [False]
threading.Thread(
target=if_done,
args=(
done,
p,
),
).start()
while 1:
with open(
"%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r"
) as f:
yield (f.read())
sleep(1)
if done[0] == True:
break
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
log = f.read()
print(log)
yield log
####对不同part分别开多进程
"""
n_part=int(sys.argv[1])
i_part=int(sys.argv[2])
i_gpu=sys.argv[3]
exp_dir=sys.argv[4]
os.environ["CUDA_VISIBLE_DEVICES"]=str(i_gpu)
"""
leng = len(gpus)
ps = []
for idx, n_g in enumerate(gpus):
cmd = (
config.python_cmd
+ " extract_feature_print.py %s %s %s %s %s/logs/%s %s"
% (
config.device,
leng,
idx,
n_g,
now_dir,
exp_dir,
version19,
)
)
print(cmd)
p = Popen(
cmd, shell=True, cwd=now_dir
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
ps.append(p)
###煞笔gr, popen read都非得全跑完了再一次性读取, 不用gr就正常读一句输出一句;只能额外弄出一个文本流定时读
done = [False]
threading.Thread(
target=if_done_multi,
args=(
done,
ps,
),
).start()
while 1:
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
yield (f.read())
sleep(1)
if done[0] == True:
break
with open("%s/logs/%s/extract_f0_feature.log" % (now_dir, exp_dir), "r") as f:
log = f.read()
print(log)
yield log
def change_sr2(sr2, if_f0_3, version19):
path_str = "" if version19 == "v1" else "_v2"
f0_str = "f0" if if_f0_3 else ""
if_pretrained_generator_exist = os.access("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK)
if_pretrained_discriminator_exist = os.access("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK)
if (if_pretrained_generator_exist == False):
print("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), "not exist, will not use pretrained model")
if (if_pretrained_discriminator_exist == False):
print("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), "not exist, will not use pretrained model")
return (
("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)) if if_pretrained_generator_exist else "",
("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)) if if_pretrained_discriminator_exist else "",
{"visible": True, "__type__": "update"}
)
def change_version19(sr2, if_f0_3, version19):
path_str = "" if version19 == "v1" else "_v2"
f0_str = "f0" if if_f0_3 else ""
if_pretrained_generator_exist = os.access("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), os.F_OK)
if_pretrained_discriminator_exist = os.access("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), os.F_OK)
if (if_pretrained_generator_exist == False):
print("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2), "not exist, will not use pretrained model")
if (if_pretrained_discriminator_exist == False):
print("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2), "not exist, will not use pretrained model")
return (
("pretrained%s/%sG%s.pth" % (path_str, f0_str, sr2)) if if_pretrained_generator_exist else "",
("pretrained%s/%sD%s.pth" % (path_str, f0_str, sr2)) if if_pretrained_discriminator_exist else "",
)
def change_f0(if_f0_3, sr2, version19): # f0method8,pretrained_G14,pretrained_D15
path_str = "" if version19 == "v1" else "_v2"
if_pretrained_generator_exist = os.access("pretrained%s/f0G%s.pth" % (path_str, sr2), os.F_OK)
if_pretrained_discriminator_exist = os.access("pretrained%s/f0D%s.pth" % (path_str, sr2), os.F_OK)
if (if_pretrained_generator_exist == False):
print("pretrained%s/f0G%s.pth" % (path_str, sr2), "not exist, will not use pretrained model")
if (if_pretrained_discriminator_exist == False):
print("pretrained%s/f0D%s.pth" % (path_str, sr2), "not exist, will not use pretrained model")
if if_f0_3:
return (
{"visible": True, "__type__": "update"},
"pretrained%s/f0G%s.pth" % (path_str, sr2) if if_pretrained_generator_exist else "",
"pretrained%s/f0D%s.pth" % (path_str, sr2) if if_pretrained_discriminator_exist else "",
)
return (
{"visible": False, "__type__": "update"},
("pretrained%s/G%s.pth" % (path_str, sr2)) if if_pretrained_generator_exist else "",
("pretrained%s/D%s.pth" % (path_str, sr2)) if if_pretrained_discriminator_exist else "",
)
global log_interval
def set_log_interval(exp_dir, batch_size12):
log_interval = 1
folder_path = os.path.join(exp_dir, "1_16k_wavs")
if os.path.exists(folder_path) and os.path.isdir(folder_path):
wav_files = [f for f in os.listdir(folder_path) if f.endswith(".wav")]
if wav_files:
sample_size = len(wav_files)
log_interval = math.ceil(sample_size / batch_size12)
if log_interval > 1:
log_interval += 1
return log_interval
# but3.click(click_train,[exp_dir1,sr2,if_f0_3,save_epoch10,total_epoch11,batch_size12,if_save_latest13,pretrained_G14,pretrained_D15,gpus16])
def click_train(
exp_dir1,
sr2,
if_f0_3,
spk_id5,
save_epoch10,
total_epoch11,
batch_size12,
if_save_latest13,
pretrained_G14,
pretrained_D15,
gpus16,
if_cache_gpu17,
if_save_every_weights18,
version19,
):
CSVutil('csvdb/stop.csv', 'w+', 'formanting', False)
# 生成filelist
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
os.makedirs(exp_dir, exist_ok=True)
gt_wavs_dir = "%s/0_gt_wavs" % (exp_dir)
feature_dir = (
"%s/3_feature256" % (exp_dir)
if version19 == "v1"
else "%s/3_feature768" % (exp_dir)
)
log_interval = set_log_interval(exp_dir, batch_size12)
if if_f0_3:
f0_dir = "%s/2a_f0" % (exp_dir)
f0nsf_dir = "%s/2b-f0nsf" % (exp_dir)
names = (
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
& set([name.split(".")[0] for name in os.listdir(feature_dir)])
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
)
else:
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
[name.split(".")[0] for name in os.listdir(feature_dir)]
)
opt = []
for name in names:
if if_f0_3:
opt.append(
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
% (
gt_wavs_dir.replace("\\", "\\\\"),
name,
feature_dir.replace("\\", "\\\\"),
name,
f0_dir.replace("\\", "\\\\"),
name,
f0nsf_dir.replace("\\", "\\\\"),
name,
spk_id5,
)
)
else:
opt.append(
"%s/%s.wav|%s/%s.npy|%s"
% (
gt_wavs_dir.replace("\\", "\\\\"),
name,
feature_dir.replace("\\", "\\\\"),
name,
spk_id5,
)
)
fea_dim = 256 if version19 == "v1" else 768
if if_f0_3:
for _ in range(2):
opt.append(
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
)
else:
for _ in range(2):
opt.append(
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
% (now_dir, sr2, now_dir, fea_dim, spk_id5)
)
shuffle(opt)
with open("%s/filelist.txt" % exp_dir, "w") as f:
f.write("\n".join(opt))
print("write filelist done")
# 生成config#无需生成config
# cmd = python_cmd + " train_nsf_sim_cache_sid_load_pretrain.py -e mi-test -sr 40k -f0 1 -bs 4 -g 0 -te 10 -se 5 -pg pretrained/f0G40k.pth -pd pretrained/f0D40k.pth -l 1 -c 0"
print("use gpus:", gpus16)
if pretrained_G14 == "":
print("no pretrained Generator")
if pretrained_D15 == "":
print("no pretrained Discriminator")
if gpus16:
cmd = (
config.python_cmd
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s -li %s"
% (
exp_dir1,
sr2,
1 if if_f0_3 else 0,
batch_size12,
gpus16,
total_epoch11,
save_epoch10,
("-pg %s" % pretrained_G14) if pretrained_G14 != "" else "",
("-pd %s" % pretrained_D15) if pretrained_D15 != "" else "",
1 if if_save_latest13 == True else 0,
1 if if_cache_gpu17 == True else 0,
1 if if_save_every_weights18 == True else 0,
version19,
log_interval,
)
)
else:
cmd = (
config.python_cmd
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s -li %s"
% (
exp_dir1,
sr2,
1 if if_f0_3 else 0,
batch_size12,
total_epoch11,
save_epoch10,
("-pg %s" % pretrained_G14) if pretrained_G14 != "" else "\b",
("-pd %s" % pretrained_D15) if pretrained_D15 != "" else "\b",
1 if if_save_latest13 == True else 0,
1 if if_cache_gpu17 == True else 0,
1 if if_save_every_weights18 == True else 0,
version19,
log_interval,
)
)
print(cmd)
p = Popen(cmd, shell=True, cwd=now_dir)
global PID
PID = p.pid
p.wait()
return ("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log", {"visible": False, "__type__": "update"}, {"visible": True, "__type__": "update"})
# but4.click(train_index, [exp_dir1], info3)
def train_index(exp_dir1, version19):
exp_dir = "%s/logs/%s" % (now_dir, exp_dir1)
os.makedirs(exp_dir, exist_ok=True)
feature_dir = (
"%s/3_feature256" % (exp_dir)
if version19 == "v1"
else "%s/3_feature768" % (exp_dir)
)
if os.path.exists(feature_dir) == False:
return "请先进行特征提取!"
listdir_res = list(os.listdir(feature_dir))
if len(listdir_res) == 0:
return "请先进行特征提取!"
npys = []
for name in sorted(listdir_res):
phone = np.load("%s/%s" % (feature_dir, name))
npys.append(phone)
big_npy = np.concatenate(npys, 0)
big_npy_idx = np.arange(big_npy.shape[0])
np.random.shuffle(big_npy_idx)
big_npy = big_npy[big_npy_idx]
np.save("%s/total_fea.npy" % exp_dir, big_npy)
# n_ivf = big_npy.shape[0] // 39
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
infos = []
infos.append("%s,%s" % (big_npy.shape, n_ivf))
yield "\n".join(infos)
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
# index = faiss.index_factory(256if version19=="v1"else 768, "IVF%s,PQ128x4fs,RFlat"%n_ivf)
infos.append("training")
yield "\n".join(infos)
index_ivf = faiss.extract_index_ivf(index) #
index_ivf.nprobe = 1
index.train(big_npy)
faiss.write_index(
index,
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
)
# faiss.write_index(index, '%s/trained_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
infos.append("adding")
yield "\n".join(infos)
batch_size_add = 8192
for i in range(0, big_npy.shape[0], batch_size_add):
index.add(big_npy[i : i + batch_size_add])
faiss.write_index(
index,
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
% (exp_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
)
infos.append(
"成功构建索引,added_IVF%s_Flat_nprobe_%s_%s_%s.index"
% (n_ivf, index_ivf.nprobe, exp_dir1, version19)
)
# faiss.write_index(index, '%s/added_IVF%s_Flat_FastScan_%s.index'%(exp_dir,n_ivf,version19))
# infos.append("成功构建索引,added_IVF%s_Flat_FastScan_%s.index"%(n_ivf,version19))
yield "\n".join(infos)
# but5.click(train1key, [exp_dir1, sr2, if_f0_3, trainset_dir4, spk_id5, gpus6, np7, f0method8, save_epoch10, total_epoch11, batch_size12, if_save_latest13, pretrained_G14, pretrained_D15, gpus16, if_cache_gpu17], info3)
def train1key(
exp_dir1,
sr2,
if_f0_3,
trainset_dir4,
spk_id5,
np7,
f0method8,
save_epoch10,
total_epoch11,
batch_size12,
if_save_latest13,
pretrained_G14,
pretrained_D15,
gpus16,
if_cache_gpu17,
if_save_every_weights18,
version19,
echl
):
infos = []
def get_info_str(strr):
infos.append(strr)
return "\n".join(infos)
model_log_dir = "%s/logs/%s" % (now_dir, exp_dir1)
preprocess_log_path = "%s/preprocess.log" % model_log_dir
extract_f0_feature_log_path = "%s/extract_f0_feature.log" % model_log_dir
gt_wavs_dir = "%s/0_gt_wavs" % model_log_dir
feature_dir = (
"%s/3_feature256" % model_log_dir
if version19 == "v1"
else "%s/3_feature768" % model_log_dir
)
os.makedirs(model_log_dir, exist_ok=True)
#########step1:处理数据
open(preprocess_log_path, "w").close()
cmd = (
config.python_cmd
+ " trainset_preprocess_pipeline_print.py %s %s %s %s "
% (trainset_dir4, sr_dict[sr2], np7, model_log_dir)
+ str(config.noparallel)
)
yield get_info_str(i18n("step1:正在处理数据"))
yield get_info_str(cmd)
p = Popen(cmd, shell=True)
p.wait()
with open(preprocess_log_path, "r") as f:
print(f.read())
#########step2a:提取音高
open(extract_f0_feature_log_path, "w")
if if_f0_3:
yield get_info_str("step2a:正在提取音高")
cmd = config.python_cmd + " extract_f0_print.py %s %s %s %s" % (
model_log_dir,
np7,
f0method8,
echl
)
yield get_info_str(cmd)
p = Popen(cmd, shell=True, cwd=now_dir)
p.wait()
with open(extract_f0_feature_log_path, "r") as f:
print(f.read())
else:
yield get_info_str(i18n("step2a:无需提取音高"))
#######step2b:提取特征
yield get_info_str(i18n("step2b:正在提取特征"))
gpus = gpus16.split("-")
leng = len(gpus)
ps = []
for idx, n_g in enumerate(gpus):
cmd = config.python_cmd + " extract_feature_print.py %s %s %s %s %s %s" % (
config.device,
leng,
idx,
n_g,
model_log_dir,
version19,
)
yield get_info_str(cmd)
p = Popen(
cmd, shell=True, cwd=now_dir
) # , shell=True, stdin=PIPE, stdout=PIPE, stderr=PIPE, cwd=now_dir
ps.append(p)
for p in ps:
p.wait()
with open(extract_f0_feature_log_path, "r") as f:
print(f.read())
#######step3a:训练模型
yield get_info_str(i18n("step3a:正在训练模型"))
# 生成filelist
if if_f0_3:
f0_dir = "%s/2a_f0" % model_log_dir
f0nsf_dir = "%s/2b-f0nsf" % model_log_dir
names = (
set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)])
& set([name.split(".")[0] for name in os.listdir(feature_dir)])
& set([name.split(".")[0] for name in os.listdir(f0_dir)])
& set([name.split(".")[0] for name in os.listdir(f0nsf_dir)])
)
else:
names = set([name.split(".")[0] for name in os.listdir(gt_wavs_dir)]) & set(
[name.split(".")[0] for name in os.listdir(feature_dir)]
)
opt = []
for name in names:
if if_f0_3:
opt.append(
"%s/%s.wav|%s/%s.npy|%s/%s.wav.npy|%s/%s.wav.npy|%s"
% (
gt_wavs_dir.replace("\\", "\\\\"),
name,
feature_dir.replace("\\", "\\\\"),
name,
f0_dir.replace("\\", "\\\\"),
name,
f0nsf_dir.replace("\\", "\\\\"),
name,
spk_id5,
)
)
else:
opt.append(
"%s/%s.wav|%s/%s.npy|%s"
% (
gt_wavs_dir.replace("\\", "\\\\"),
name,
feature_dir.replace("\\", "\\\\"),
name,
spk_id5,
)
)
fea_dim = 256 if version19 == "v1" else 768
if if_f0_3:
for _ in range(2):
opt.append(
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s/logs/mute/2a_f0/mute.wav.npy|%s/logs/mute/2b-f0nsf/mute.wav.npy|%s"
% (now_dir, sr2, now_dir, fea_dim, now_dir, now_dir, spk_id5)
)
else:
for _ in range(2):
opt.append(
"%s/logs/mute/0_gt_wavs/mute%s.wav|%s/logs/mute/3_feature%s/mute.npy|%s"
% (now_dir, sr2, now_dir, fea_dim, spk_id5)
)
shuffle(opt)
with open("%s/filelist.txt" % model_log_dir, "w") as f:
f.write("\n".join(opt))
yield get_info_str("write filelist done")
if gpus16:
cmd = (
config.python_cmd
+" train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -g %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s"
% (
exp_dir1,
sr2,
1 if if_f0_3 else 0,
batch_size12,
gpus16,
total_epoch11,
save_epoch10,
("-pg %s" % pretrained_G14) if pretrained_G14 != "" else "",
("-pd %s" % pretrained_D15) if pretrained_D15 != "" else "",
1 if if_save_latest13 == True else 0,
1 if if_cache_gpu17 == True else 0,
1 if if_save_every_weights18 == True else 0,
version19,
)
)
else:
cmd = (
config.python_cmd
+ " train_nsf_sim_cache_sid_load_pretrain.py -e %s -sr %s -f0 %s -bs %s -te %s -se %s %s %s -l %s -c %s -sw %s -v %s"
% (
exp_dir1,
sr2,
1 if if_f0_3 else 0,
batch_size12,
total_epoch11,
save_epoch10,
("-pg %s" % pretrained_G14) if pretrained_G14 != "" else "",
("-pd %s" % pretrained_D15) if pretrained_D15 != "" else "",
1 if if_save_latest13 == True else 0,
1 if if_cache_gpu17 == True else 0,
1 if if_save_every_weights18 == True else 0,
version19,
)
)
yield get_info_str(cmd)
p = Popen(cmd, shell=True, cwd=now_dir)
p.wait()
yield get_info_str(i18n("训练结束, 您可查看控制台训练日志或实验文件夹下的train.log"))
#######step3b:训练索引
npys = []
listdir_res = list(os.listdir(feature_dir))
for name in sorted(listdir_res):
phone = np.load("%s/%s" % (feature_dir, name))
npys.append(phone)
big_npy = np.concatenate(npys, 0)
big_npy_idx = np.arange(big_npy.shape[0])
np.random.shuffle(big_npy_idx)
big_npy = big_npy[big_npy_idx]
np.save("%s/total_fea.npy" % model_log_dir, big_npy)
# n_ivf = big_npy.shape[0] // 39
n_ivf = min(int(16 * np.sqrt(big_npy.shape[0])), big_npy.shape[0] // 39)
yield get_info_str("%s,%s" % (big_npy.shape, n_ivf))
index = faiss.index_factory(256 if version19 == "v1" else 768, "IVF%s,Flat" % n_ivf)
yield get_info_str("training index")
index_ivf = faiss.extract_index_ivf(index) #
index_ivf.nprobe = 1
index.train(big_npy)
faiss.write_index(
index,
"%s/trained_IVF%s_Flat_nprobe_%s_%s_%s.index"
% (model_log_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
)
yield get_info_str("adding index")
batch_size_add = 8192
for i in range(0, big_npy.shape[0], batch_size_add):
index.add(big_npy[i : i + batch_size_add])
faiss.write_index(
index,
"%s/added_IVF%s_Flat_nprobe_%s_%s_%s.index"
% (model_log_dir, n_ivf, index_ivf.nprobe, exp_dir1, version19),
)
yield get_info_str(
"成功构建索引, added_IVF%s_Flat_nprobe_%s_%s_%s.index"
% (n_ivf, index_ivf.nprobe, exp_dir1, version19)
)
yield get_info_str(i18n("全流程结束!"))
def whethercrepeornah(radio):
mango = True if radio == 'mangio-crepe' or radio == 'mangio-crepe-tiny' else False
return ({"visible": mango, "__type__": "update"})
# ckpt_path2.change(change_info_,[ckpt_path2],[sr__,if_f0__])
def change_info_(ckpt_path):
if (
os.path.exists(ckpt_path.replace(os.path.basename(ckpt_path), "train.log"))
== False
):
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
try:
with open(
ckpt_path.replace(os.path.basename(ckpt_path), "train.log"), "r"
) as f:
info = eval(f.read().strip("\n").split("\n")[0].split("\t")[-1])
sr, f0 = info["sample_rate"], info["if_f0"]
version = "v2" if ("version" in info and info["version"] == "v2") else "v1"
return sr, str(f0), version
except:
traceback.print_exc()
return {"__type__": "update"}, {"__type__": "update"}, {"__type__": "update"}
from lib.infer_pack.models_onnx import SynthesizerTrnMsNSFsidM
def export_onnx(ModelPath, ExportedPath, MoeVS=True):
cpt = torch.load(ModelPath, map_location="cpu")
cpt["config"][-3] = cpt["weight"]["emb_g.weight"].shape[0] # n_spk
hidden_channels = 256 if cpt.get("version","v1")=="v1"else 768#cpt["config"][-2] # hidden_channels,为768Vec做准备
test_phone = torch.rand(1, 200, hidden_channels) # hidden unit
test_phone_lengths = torch.tensor([200]).long() # hidden unit 长度(貌似没啥用)
test_pitch = torch.randint(size=(1, 200), low=5, high=255) # 基频(单位赫兹)
test_pitchf = torch.rand(1, 200) # nsf基频
test_ds = torch.LongTensor([0]) # 说话人ID
test_rnd = torch.rand(1, 192, 200) # 噪声(加入随机因子)
device = "cpu" # 导出时设备(不影响使用模型)
net_g = SynthesizerTrnMsNSFsidM(
*cpt["config"], is_half=False,version=cpt.get("version","v1")
) # fp32导出(C++要支持fp16必须手动将内存重新排列所以暂时不用fp16)
net_g.load_state_dict(cpt["weight"], strict=False)
input_names = ["phone", "phone_lengths", "pitch", "pitchf", "ds", "rnd"]
output_names = [
"audio",
]
# net_g.construct_spkmixmap(n_speaker) 多角色混合轨道导出
torch.onnx.export(
net_g,
(
test_phone.to(device),
test_phone_lengths.to(device),
test_pitch.to(device),
test_pitchf.to(device),
test_ds.to(device),
test_rnd.to(device),
),
ExportedPath,
dynamic_axes={
"phone": [1],
"pitch": [1],
"pitchf": [1],
"rnd": [2],
},
do_constant_folding=False,
opset_version=16,
verbose=False,
input_names=input_names,
output_names=output_names,
)
return "Finished"
#region RVC WebUI App
def get_presets():
data = None
with open('../inference-presets.json', 'r') as file:
data = json.load(file)
preset_names = []
for preset in data['presets']:
preset_names.append(preset['name'])
return preset_names
def change_choices2():
audio_files=[]
for filename in os.listdir("./audios"):
if filename.endswith(('.wav','.mp3','.ogg','.flac','.m4a','.aac','.mp4')):
audio_files.append(os.path.join('./audios',filename).replace('\\', '/'))
return {"choices": sorted(audio_files), "__type__": "update"}, {"__type__": "update"}
audio_files=[]
for filename in os.listdir("./audios"):
if filename.endswith(('.wav','.mp3','.ogg','.flac','.m4a','.aac','.mp4')):
audio_files.append(os.path.join('./audios',filename).replace('\\', '/'))
def get_index():
if check_for_name() != '':
chosen_model=sorted(names)[0].split(".")[0]
logs_path="./logs/"+chosen_model
if os.path.exists(logs_path):
for file in os.listdir(logs_path):
if file.endswith(".index"):
return os.path.join(logs_path, file)
return ''
else:
return ''
def get_indexes():
indexes_list=[]
for dirpath, dirnames, filenames in os.walk("./logs/"):
for filename in filenames:
if filename.endswith(".index"):
indexes_list.append(os.path.join(dirpath,filename))
if len(indexes_list) > 0:
return indexes_list
else:
return ''
def get_name():
if len(audio_files) > 0:
return sorted(audio_files)[0]
else:
return ''
def save_to_wav(record_button):
if record_button is None:
pass
else:
path_to_file=record_button
new_name = datetime.datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+'.wav'
new_path='./audios/'+new_name
shutil.move(path_to_file,new_path)
return new_path
def save_to_wav2(dropbox):
file_path=dropbox.name
shutil.move(file_path,'./audios')
return os.path.join('./audios',os.path.basename(file_path))
def match_index(sid0):
folder=sid0.split(".")[0]
parent_dir="./logs/"+folder
if os.path.exists(parent_dir):
for filename in os.listdir(parent_dir):
if filename.endswith(".index"):
index_path=os.path.join(parent_dir,filename)
return index_path
else:
return ''
def check_for_name():
if len(names) > 0:
return sorted(names)[0]
else:
return ''
def download_from_url(url, model):
if url == '':
return "URL cannot be left empty."
if model =='':
return "You need to name your model. For example: My-Model"
url = url.strip()
zip_dirs = ["zips", "unzips"]
for directory in zip_dirs:
if os.path.exists(directory):
shutil.rmtree(directory)
os.makedirs("zips", exist_ok=True)
os.makedirs("unzips", exist_ok=True)
zipfile = model + '.zip'
zipfile_path = './zips/' + zipfile
try:
if "drive.google.com" in url:
subprocess.run(["gdown", url, "--fuzzy", "-O", zipfile_path])
elif "mega.nz" in url:
m = Mega()
m.download_url(url, './zips')
else:
subprocess.run(["wget", url, "-O", zipfile_path])
for filename in os.listdir("./zips"):
if filename.endswith(".zip"):
zipfile_path = os.path.join("./zips/",filename)
shutil.unpack_archive(zipfile_path, "./unzips", 'zip')
else:
return "No zipfile found."
for root, dirs, files in os.walk('./unzips'):
for file in files:
file_path = os.path.join(root, file)
if file.endswith(".index"):
os.mkdir(f'./logs/{model}')
shutil.copy2(file_path,f'./logs/{model}')
elif "G_" not in file and "D_" not in file and file.endswith(".pth"):
shutil.copy(file_path,f'./weights/{model}.pth')
shutil.rmtree("zips")
shutil.rmtree("unzips")
return "Model downloaded, you can go back to the inference page!"
except:
return "ERROR - The download failed. Check if the link is valid."
def success_message(face):
return f'{face.name} has been uploaded.', 'None'
def mouth(size, face, voice, faces):
if size == 'Half':
size = 2
else:
size = 1
if faces == 'None':
character = face.name
else:
if faces == 'Ben Shapiro':
character = '/content/wav2lip-HD/inputs/ben-shapiro-10.mp4'
elif faces == 'Andrew Tate':
character = '/content/wav2lip-HD/inputs/tate-7.mp4'
command = "python inference.py " \
"--checkpoint_path checkpoints/wav2lip.pth " \
f"--face {character} " \
f"--audio {voice} " \
"--pads 0 20 0 0 " \
"--outfile /content/wav2lip-HD/outputs/result.mp4 " \
"--fps 24 " \
f"--resize_factor {size}"
process = subprocess.Popen(command, shell=True, cwd='/content/wav2lip-HD/Wav2Lip-master')
stdout, stderr = process.communicate()
return '/content/wav2lip-HD/outputs/result.mp4', 'Animation completed.'
eleven_voices = ['Adam','Antoni','Josh','Arnold','Sam','Bella','Rachel','Domi','Elli']
eleven_voices_ids=['pNInz6obpgDQGcFmaJgB','ErXwobaYiN019PkySvjV','TxGEqnHWrfWFTfGW9XjX','VR6AewLTigWG4xSOukaG','yoZ06aMxZJJ28mfd3POQ','EXAVITQu4vr4xnSDxMaL','21m00Tcm4TlvDq8ikWAM','AZnzlk1XvdvUeBnXmlld','MF3mGyEYCl7XYWbV9V6O']
chosen_voice = dict(zip(eleven_voices, eleven_voices_ids))
def stoptraining(mim):
if int(mim) == 1:
try:
CSVutil('csvdb/stop.csv', 'w+', 'stop', 'True')
os.kill(PID, signal.SIGTERM)
except Exception as e:
print(f"Couldn't click due to {e}")
return (
{"visible": False, "__type__": "update"},
{"visible": True, "__type__": "update"},
)
def elevenTTS(xiapi, text, id, lang):
if xiapi!= '' and id !='':
choice = chosen_voice[id]
CHUNK_SIZE = 1024
url = f"https://api.elevenlabs.io/v1/text-to-speech/{choice}"
headers = {
"Accept": "audio/mpeg",
"Content-Type": "application/json",
"xi-api-key": xiapi
}
if lang == 'en':
data = {
"text": text,
"model_id": "eleven_monolingual_v1",
"voice_settings": {
"stability": 0.5,
"similarity_boost": 0.5
}
}
else:
data = {
"text": text,
"model_id": "eleven_multilingual_v1",
"voice_settings": {
"stability": 0.5,
"similarity_boost": 0.5
}
}
response = requests.post(url, json=data, headers=headers)
with open('./temp_eleven.mp3', 'wb') as f:
for chunk in response.iter_content(chunk_size=CHUNK_SIZE):
if chunk:
f.write(chunk)
aud_path = save_to_wav('./temp_eleven.mp3')
return aud_path, aud_path
else:
tts = gTTS(text, lang=lang)
tts.save('./temp_gTTS.mp3')
aud_path = save_to_wav('./temp_gTTS.mp3')
return aud_path, aud_path
def ilariaTTS(text, ttsvoice):
vo=language_dict[ttsvoice]
asyncio.run(edge_tts.Communicate(text, vo).save("./temp_ilaria.mp3"))
aud_path = save_to_wav('./temp_ilaria.mp3')
return aud_path, aud_path
def upload_to_dataset(files, dir):
if dir == '':
dir = './dataset'
if not os.path.exists(dir):
os.makedirs(dir)
count = 0
for file in files:
path=file.name
shutil.copy2(path,dir)
count += 1
return f' {count} files uploaded to {dir}.'
def zip_downloader(model):
if not os.path.exists(f'./weights/{model}.pth'):
return {"__type__": "update"}, f'Make sure the Voice Name is correct. I could not find {model}.pth'
index_found = False
for file in os.listdir(f'./logs/{model}'):
if file.endswith('.index') and 'added' in file:
log_file = file
index_found = True
if index_found:
return [f'./weights/{model}.pth', f'./logs/{model}/{log_file}'], "Done"
else:
return f'./weights/{model}.pth', "Could not find Index file."
with gr.Blocks(theme=gr.themes.Default(primary_hue="pink", secondary_hue="rose"), title="Ilaria RVC 💖") as app:
with gr.Tabs():
with gr.TabItem("Inference"):
gr.HTML("<h1> Ilaria RVC 💖 </h1>")
gr.HTML("<h10> You can find voice models on AI Hub: https://discord.gg/aihub </h10>")
gr.HTML("<h4> Huggingface port by Ilaria of the Rejekt Easy GUI </h4>")
# Inference Preset Row
# with gr.Row():
# mangio_preset = gr.Dropdown(label="Inference Preset", choices=sorted(get_presets()))
# mangio_preset_name_save = gr.Textbox(
# label="Your preset name"
# )
# mangio_preset_save_btn = gr.Button('Save Preset', variant="primary")
# Other RVC stuff
with gr.Row():
sid0 = gr.Dropdown(label="1.Choose the model.", choices=sorted(names), value=check_for_name())
refresh_button = gr.Button("Refresh", variant="primary")
if check_for_name() != '':
get_vc(sorted(names)[0])
vc_transform0 = gr.Number(label="Pitch: 0 from man to man (or woman to woman); 12 from man to woman and -12 from woman to man.", value=0)
#clean_button = gr.Button(i18n("卸载音色省显存"), variant="primary")
spk_item = gr.Slider(
minimum=0,
maximum=2333,
step=1,
label=i18n("请选择说话人id"),
value=0,
visible=False,
interactive=True,
)
#clean_button.click(fn=clean, inputs=[], outputs=[sid0])
sid0.change(
fn=get_vc,
inputs=[sid0],
outputs=[spk_item],
)
but0 = gr.Button("Convert", variant="primary")
with gr.Row():
with gr.Column():
with gr.Row():
dropbox = gr.File(label="Drag your audio file and click refresh.")
with gr.Row():
record_button=gr.Audio(label="Or you can use your microphone!", type="filepath")
with gr.Row():
input_audio0 = gr.Dropdown(
label="2.Choose the audio file.",
value="./audios/Test_Audio.mp3",
choices=audio_files
)
dropbox.upload(fn=save_to_wav2, inputs=[dropbox], outputs=[input_audio0])
dropbox.upload(fn=change_choices2, inputs=[], outputs=[input_audio0])
refresh_button2 = gr.Button("Refresh", variant="primary", size='sm')
record_button.change(fn=save_to_wav, inputs=[record_button], outputs=[input_audio0])
record_button.change(fn=change_choices2, inputs=[], outputs=[input_audio0])
with gr.Row():
with gr.Accordion('ElevenLabs / Google TTS', open=False):
with gr.Column():
lang = gr.Radio(label='Chinese & Japanese do not work with ElevenLabs currently.',choices=['en','it','es','fr','pt','zh-CN','de','hi','ja'], value='en')
api_box = gr.Textbox(label="Enter your API Key for ElevenLabs, or leave empty to use GoogleTTS", value='')
elevenid=gr.Dropdown(label="Voice:", choices=eleven_voices)
with gr.Column():
tfs = gr.Textbox(label="Input your Text", interactive=True, value="This is a test.")
tts_button = gr.Button(value="Speak")
tts_button.click(fn=elevenTTS, inputs=[api_box,tfs, elevenid, lang], outputs=[record_button, input_audio0])
with gr.Row():
with gr.Accordion('Wav2Lip', open=False, visible=False):
with gr.Row():
size = gr.Radio(label='Resolution:',choices=['Half','Full'])
face = gr.UploadButton("Upload A Character",type='filepath')
faces = gr.Dropdown(label="OR Choose one:", choices=['None','Ben Shapiro','Andrew Tate'])
with gr.Row():
preview = gr.Textbox(label="Status:",interactive=False)
face.upload(fn=success_message,inputs=[face], outputs=[preview, faces])
with gr.Row():
animation = gr.Video()
refresh_button2.click(fn=change_choices2, inputs=[], outputs=[input_audio0, animation])
with gr.Row():
animate_button = gr.Button('Animate')
with gr.Column():
vc_output2 = gr.Audio(
label="Final Result! (Click on the three dots to download the audio)",
type='filepath',
interactive=False,
)
with gr.Accordion('IlariaTTS', open=True):
with gr.Column():
ilariaid=gr.Dropdown(label="Voice:", choices=ilariavoices, value="English-Jenny (Female)")
ilariatext = gr.Textbox(label="Input your Text", interactive=True, value="This is a test.")
ilariatts_button = gr.Button(value="Speak")
ilariatts_button.click(fn=ilariaTTS, inputs=[ilariatext, ilariaid], outputs=[record_button, input_audio0])
#with gr.Column():
with gr.Accordion("Index Settings", open=False):
#with gr.Row():
file_index1 = gr.Dropdown(
label="3. Choose the index file (in case it wasn't automatically found.)",
choices=get_indexes(),
value=get_index(),
interactive=True,
)
sid0.change(fn=match_index, inputs=[sid0],outputs=[file_index1])
refresh_button.click(
fn=change_choices, inputs=[], outputs=[sid0, file_index1]
)
# file_big_npy1 = gr.Textbox(
# label=i18n("特征文件路径"),
# value="E:\\codes\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
# interactive=True,
# )
index_rate1 = gr.Slider(
minimum=0,
maximum=1,
label=i18n("检索特征占比"),
value=0.66,
interactive=True,
)
animate_button.click(fn=mouth, inputs=[size, face, vc_output2, faces], outputs=[animation, preview])
with gr.Accordion("Advanced Options", open=False):
f0method0 = gr.Radio(
label="Optional: Change the Pitch Extraction Algorithm. Extraction methods are sorted from 'worst quality' to 'best quality'. If you don't know what you're doing, leave rmvpe.",
choices=["pm", "dio", "crepe-tiny", "mangio-crepe-tiny", "crepe", "harvest", "mangio-crepe", "rmvpe"], # Fork Feature. Add Crepe-Tiny
value="rmvpe",
interactive=True,
)
crepe_hop_length = gr.Slider(
minimum=1,
maximum=512,
step=1,
label="Mangio-Crepe Hop Length. Higher numbers will reduce the chance of extreme pitch changes but lower numbers will increase accuracy. 64-192 is a good range to experiment with.",
value=120,
interactive=True,
visible=False,
)
f0method0.change(fn=whethercrepeornah, inputs=[f0method0], outputs=[crepe_hop_length])
filter_radius0 = gr.Slider(
minimum=0,
maximum=7,
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
value=3,
step=1,
interactive=True,
)
resample_sr0 = gr.Slider(
minimum=0,
maximum=48000,
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
value=0,
step=1,
interactive=True,
visible=False
)
rms_mix_rate0 = gr.Slider(
minimum=0,
maximum=1,
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
value=0.21,
interactive=True,
)
protect0 = gr.Slider(
minimum=0,
maximum=0.5,
label=i18n("保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"),
value=0.33,
step=0.01,
interactive=True,
)
formanting = gr.Checkbox(
value=bool(DoFormant),
label="[EXPERIMENTAL] Formant shift inference audio",
info="Used for male to female and vice-versa conversions",
interactive=True,
visible=True,
)
formant_preset = gr.Dropdown(
value='',
choices=get_fshift_presets(),
label="browse presets for formanting",
visible=bool(DoFormant),
)
formant_refresh_button = gr.Button(
value='\U0001f504',
visible=bool(DoFormant),
variant='primary',
)
#formant_refresh_button = ToolButton( elem_id='1')
#create_refresh_button(formant_preset, lambda: {"choices": formant_preset}, "refresh_list_shiftpresets")
qfrency = gr.Slider(
value=Quefrency,
info="Default value is 1.0",
label="Quefrency for formant shifting",
minimum=0.0,
maximum=16.0,
step=0.1,
visible=bool(DoFormant),
interactive=True,
)
tmbre = gr.Slider(
value=Timbre,
info="Default value is 1.0",
label="Timbre for formant shifting",
minimum=0.0,
maximum=16.0,
step=0.1,
visible=bool(DoFormant),
interactive=True,
)
formant_preset.change(fn=preset_apply, inputs=[formant_preset, qfrency, tmbre], outputs=[qfrency, tmbre])
frmntbut = gr.Button("Apply", variant="primary", visible=bool(DoFormant))
formanting.change(fn=formant_enabled,inputs=[formanting,qfrency,tmbre,frmntbut,formant_preset,formant_refresh_button],outputs=[formanting,qfrency,tmbre,frmntbut,formant_preset,formant_refresh_button])
frmntbut.click(fn=formant_apply,inputs=[qfrency, tmbre], outputs=[qfrency, tmbre])
formant_refresh_button.click(fn=update_fshift_presets,inputs=[formant_preset, qfrency, tmbre],outputs=[formant_preset, qfrency, tmbre])
with gr.Row():
vc_output1 = gr.Textbox("")
f0_file = gr.File(label=i18n("F0曲线文件, 可选, 一行一个音高, 代替默认F0及升降调"), visible=False)
but0.click(
vc_single,
[
spk_item,
input_audio0,
vc_transform0,
f0_file,
f0method0,
file_index1,
# file_index2,
# file_big_npy1,
index_rate1,
filter_radius0,
resample_sr0,
rms_mix_rate0,
protect0,
crepe_hop_length
],
[vc_output1, vc_output2],
)
with gr.Accordion("Batch Conversion",open=False, visible=False):
with gr.Row():
with gr.Column():
vc_transform1 = gr.Number(
label=i18n("变调(整数, 半音数量, 升八度12降八度-12)"), value=0
)
opt_input = gr.Textbox(label=i18n("指定输出文件夹"), value="opt")
f0method1 = gr.Radio(
label=i18n(
"选择音高提取算法,输入歌声可用pm提速,harvest低音好但巨慢无比,crepe效果好但吃GPU"
),
choices=["pm", "harvest", "crepe", "rmvpe"],
value="rmvpe",
interactive=True,
)
filter_radius1 = gr.Slider(
minimum=0,
maximum=7,
label=i18n(">=3则使用对harvest音高识别的结果使用中值滤波,数值为滤波半径,使用可以削弱哑音"),
value=3,
step=1,
interactive=True,
)
with gr.Column():
file_index3 = gr.Textbox(
label=i18n("特征检索库文件路径,为空则使用下拉的选择结果"),
value="",
interactive=True,
)
file_index4 = gr.Dropdown(
label=i18n("自动检测index路径,下拉式选择(dropdown)"),
choices=sorted(index_paths),
interactive=True,
)
refresh_button.click(
fn=lambda: change_choices()[1],
inputs=[],
outputs=file_index4,
)
# file_big_npy2 = gr.Textbox(
# label=i18n("特征文件路径"),
# value="E:\\codes\\py39\\vits_vc_gpu_train\\logs\\mi-test-1key\\total_fea.npy",
# interactive=True,
# )
index_rate2 = gr.Slider(
minimum=0,
maximum=1,
label=i18n("检索特征占比"),
value=1,
interactive=True,
)
with gr.Column():
resample_sr1 = gr.Slider(
minimum=0,
maximum=48000,
label=i18n("后处理重采样至最终采样率,0为不进行重采样"),
value=0,
step=1,
interactive=True,
)
rms_mix_rate1 = gr.Slider(
minimum=0,
maximum=1,
label=i18n("输入源音量包络替换输出音量包络融合比例,越靠近1越使用输出包络"),
value=1,
interactive=True,
)
protect1 = gr.Slider(
minimum=0,
maximum=0.5,
label=i18n(
"保护清辅音和呼吸声,防止电音撕裂等artifact,拉满0.5不开启,调低加大保护力度但可能降低索引效果"
),
value=0.33,
step=0.01,
interactive=True,
)
with gr.Column():
dir_input = gr.Textbox(
label=i18n("输入待处理音频文件夹路径(去文件管理器地址栏拷就行了)"),
value="E:\codes\py39\\test-20230416b\\todo-songs",
)
inputs = gr.File(
file_count="multiple", label=i18n("也可批量输入音频文件, 二选一, 优先读文件夹")
)
with gr.Row():
format1 = gr.Radio(
label=i18n("导出文件格式"),
choices=["wav", "flac", "mp3", "m4a"],
value="flac",
interactive=True,
)
but1 = gr.Button(i18n("转换"), variant="primary")
vc_output3 = gr.Textbox(label=i18n("输出信息"))
but1.click(
vc_multi,
[
spk_item,
dir_input,
opt_input,
inputs,
vc_transform1,
f0method1,
file_index3,
file_index4,
# file_big_npy2,
index_rate2,
filter_radius1,
resample_sr1,
rms_mix_rate1,
protect1,
format1,
crepe_hop_length,
],
[vc_output3],
)
but1.click(fn=lambda: easy_uploader.clear())
with gr.TabItem("Download Voice Models"):
with gr.Row():
url=gr.Textbox(label="Huggingface Link:")
with gr.Row():
model = gr.Textbox(label="Name of the model (without spaces):")
download_button=gr.Button("Download")
with gr.Row():
status_bar=gr.Textbox(label="Download Status")
download_button.click(fn=download_from_url, inputs=[url, model], outputs=[status_bar])
with gr.Row():
gr.Markdown(
"""
Made with 💖 by Ilaria | Support her on [Ko-Fi](https://ko-fi.com/ilariaowo)
"""
)
def has_two_files_in_pretrained_folder():
pretrained_folder = "./pretrained/"
if not os.path.exists(pretrained_folder):
return False
files_in_folder = os.listdir(pretrained_folder)
num_files = len(files_in_folder)
return num_files >= 2
if has_two_files_in_pretrained_folder():
print("Pretrained weights are downloaded. Training tab enabled!\n-------------------------------")
with gr.TabItem("Train", visible=False):
with gr.Row():
with gr.Column():
exp_dir1 = gr.Textbox(label="Voice Name:", value="My-Voice")
sr2 = gr.Radio(
label=i18n("目标采样率"),
choices=["40k", "48k"],
value="40k",
interactive=True,
visible=False
)
if_f0_3 = gr.Radio(
label=i18n("模型是否带音高指导(唱歌一定要, 语音可以不要)"),
choices=[True, False],
value=True,
interactive=True,
visible=False
)
version19 = gr.Radio(
label="RVC version",
choices=["v1", "v2"],
value="v2",
interactive=True,
visible=False,
)
np7 = gr.Slider(
minimum=0,
maximum=config.n_cpu,
step=1,
label="# of CPUs for data processing (Leave as it is)",
value=config.n_cpu,
interactive=True,
visible=True
)
trainset_dir4 = gr.Textbox(label="Path to your dataset (audios, not zip):", value="./dataset")
easy_uploader = gr.Files(label='OR Drop your audios here. They will be uploaded in your dataset path above.',file_types=['audio'])
but1 = gr.Button("1. Process The Dataset", variant="primary")
info1 = gr.Textbox(label="Status (wait until it says 'end preprocess'):", value="")
easy_uploader.upload(fn=upload_to_dataset, inputs=[easy_uploader, trainset_dir4], outputs=[info1])
but1.click(
preprocess_dataset, [trainset_dir4, exp_dir1, sr2, np7], [info1]
)
with gr.Column():
spk_id5 = gr.Slider(
minimum=0,
maximum=4,
step=1,
label=i18n("请指定说话人id"),
value=0,
interactive=True,
visible=False
)
with gr.Accordion('GPU Settings', open=False, visible=False):
gpus6 = gr.Textbox(
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
value=gpus,
interactive=True,
visible=False
)
gpu_info9 = gr.Textbox(label=i18n("显卡信息"), value=gpu_info)
f0method8 = gr.Radio(
label=i18n(
"选择音高提取算法:输入歌声可用pm提速,高质量语音但CPU差可用dio提速,harvest质量更好但慢"
),
choices=["harvest","crepe", "mangio-crepe", "rmvpe"], # Fork feature: Crepe on f0 extraction for training.
value="rmvpe",
interactive=True,
)
extraction_crepe_hop_length = gr.Slider(
minimum=1,
maximum=512,
step=1,
label=i18n("crepe_hop_length"),
value=128,
interactive=True,
visible=False,
)
f0method8.change(fn=whethercrepeornah, inputs=[f0method8], outputs=[extraction_crepe_hop_length])
but2 = gr.Button("2. Pitch Extraction", variant="primary")
info2 = gr.Textbox(label="Status(Check the Colab Notebook's cell output):", value="", max_lines=8)
but2.click(
extract_f0_feature,
[gpus6, np7, f0method8, if_f0_3, exp_dir1, version19, extraction_crepe_hop_length],
[info2],
)
with gr.Row():
with gr.Column():
total_epoch11 = gr.Slider(
minimum=1,
maximum=5000,
step=10,
label="Total # of training epochs (IF you choose a value too high, your model will sound horribly overtrained.):",
value=250,
interactive=True,
)
butstop = gr.Button(
"Stop Training",
variant='primary',
visible=False,
)
but3 = gr.Button("3. Train Model", variant="primary", visible=True)
but3.click(fn=stoptraining, inputs=[gr.Number(value=0, visible=False)], outputs=[but3, butstop])
butstop.click(fn=stoptraining, inputs=[gr.Number(value=1, visible=False)], outputs=[butstop, but3])
but4 = gr.Button("4.Train Index", variant="primary")
info3 = gr.Textbox(label="Status(Check the Colab Notebook's cell output):", value="", max_lines=10)
with gr.Accordion("Training Preferences (You can leave these as they are)", open=False):
#gr.Markdown(value=i18n("step3: 填写训练设置, 开始训练模型和索引"))
with gr.Column():
save_epoch10 = gr.Slider(
minimum=1,
maximum=200,
step=1,
label="Backup every X amount of epochs:",
value=10,
interactive=True,
)
batch_size12 = gr.Slider(
minimum=1,
maximum=40,
step=1,
label="Batch Size (LEAVE IT unless you know what you're doing!):",
value=default_batch_size,
interactive=True,
)
if_save_latest13 = gr.Checkbox(
label="Save only the latest '.ckpt' file to save disk space.",
value=True,
interactive=True,
)
if_cache_gpu17 = gr.Checkbox(
label="Cache all training sets to GPU memory. Caching small datasets (less than 10 minutes) can speed up training, but caching large datasets will consume a lot of GPU memory and may not provide much speed improvement.",
value=False,
interactive=True,
)
if_save_every_weights18 = gr.Checkbox(
label="Save a small final model to the 'weights' folder at each save point.",
value=True,
interactive=True,
)
zip_model = gr.Button('5. Download Model')
zipped_model = gr.Files(label='Your Model and Index file can be downloaded here:')
zip_model.click(fn=zip_downloader, inputs=[exp_dir1], outputs=[zipped_model, info3])
with gr.Group():
with gr.Accordion("Base Model Locations:", open=False, visible=False):
pretrained_G14 = gr.Textbox(
label=i18n("加载预训练底模G路径"),
value="pretrained_v2/f0G40k.pth",
interactive=True,
)
pretrained_D15 = gr.Textbox(
label=i18n("加载预训练底模D路径"),
value="pretrained_v2/f0D40k.pth",
interactive=True,
)
gpus16 = gr.Textbox(
label=i18n("以-分隔输入使用的卡号, 例如 0-1-2 使用卡0和卡1和卡2"),
value=gpus,
interactive=True,
)
sr2.change(
change_sr2,
[sr2, if_f0_3, version19],
[pretrained_G14, pretrained_D15, version19],
)
version19.change(
change_version19,
[sr2, if_f0_3, version19],
[pretrained_G14, pretrained_D15],
)
if_f0_3.change(
change_f0,
[if_f0_3, sr2, version19],
[f0method8, pretrained_G14, pretrained_D15],
)
but5 = gr.Button(i18n("一键训练"), variant="primary", visible=False)
but3.click(
click_train,
[
exp_dir1,
sr2,
if_f0_3,
spk_id5,
save_epoch10,
total_epoch11,
batch_size12,
if_save_latest13,
pretrained_G14,
pretrained_D15,
gpus16,
if_cache_gpu17,
if_save_every_weights18,
version19,
],
[
info3,
butstop,
but3,
],
)
but4.click(train_index, [exp_dir1, version19], info3)
but5.click(
train1key,
[
exp_dir1,
sr2,
if_f0_3,
trainset_dir4,
spk_id5,
np7,
f0method8,
save_epoch10,
total_epoch11,
batch_size12,
if_save_latest13,
pretrained_G14,
pretrained_D15,
gpus16,
if_cache_gpu17,
if_save_every_weights18,
version19,
extraction_crepe_hop_length
],
info3,
)
else:
print(
"Pretrained weights not downloaded. Disabling training tab.\n"
"Wondering how to train a voice? Join AI HUB Discord Server! https://discord.gg/aihub\n"
"-------------------------------\n"
)
app.launch(share=False, quiet=False, max_threads=1022)
#endpain |