from fastai.vision.all import * import gradio as gr learn = load_learner('made.pkl') categories = ('Leão', 'Tigre') # Function to classify the image using the selected model def classify_image(img): _, _, probs = learn.predict(img) return dict(zip(categories, map(float, probs))) # Define input and output components image = gr.Image() label = gr.Label() # Examples for testing examples = ['Lion.jpg','Tiger.jpg','L2.jpg','T2.jpg','P1.jpg','T3.jpg','king.png'] # Create Gradio Interface intf = gr.Interface(fn=classify_image, inputs=image, outputs=label, examples=examples) # Launch the Gradio interface intf.launch(inline=False)