Update app.py
Browse files
app.py
CHANGED
@@ -1,85 +1,59 @@
|
|
1 |
import os
|
2 |
-
import torch
|
3 |
-
import gradio as gr
|
4 |
import time
|
|
|
5 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
6 |
from flores200_codes import flores_codes
|
7 |
|
8 |
-
|
9 |
def load_models():
|
10 |
-
|
11 |
-
model_name_dict = {'nllb-distilled-600M': 'facebook/nllb-200-distilled-600M',
|
12 |
-
#'nllb-1.3B': 'facebook/nllb-200-1.3B',
|
13 |
-
#'nllb-distilled-1.3B': 'facebook/nllb-200-distilled-1.3B',
|
14 |
-
#'nllb-3.3B': 'facebook/nllb-200-3.3B',
|
15 |
-
}
|
16 |
-
|
17 |
model_dict = {}
|
18 |
-
|
19 |
for call_name, real_name in model_name_dict.items():
|
20 |
-
print('\tLoading model:
|
21 |
model = AutoModelForSeq2SeqLM.from_pretrained(real_name)
|
22 |
tokenizer = AutoTokenizer.from_pretrained(real_name)
|
23 |
-
model_dict[call_name+'_model'] = model
|
24 |
-
model_dict[call_name+'_tokenizer'] = tokenizer
|
25 |
-
|
26 |
return model_dict
|
27 |
|
|
|
|
|
28 |
|
29 |
-
def
|
30 |
if len(model_dict) == 2:
|
31 |
model_name = 'nllb-distilled-600M'
|
32 |
-
|
33 |
start_time = time.time()
|
34 |
-
source = flores_codes
|
35 |
-
target = flores_codes
|
|
|
|
|
|
|
36 |
|
37 |
model = model_dict[model_name + '_model']
|
38 |
tokenizer = model_dict[model_name + '_tokenizer']
|
39 |
-
|
40 |
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=source, tgt_lang=target)
|
41 |
-
output = translator(
|
42 |
-
|
43 |
end_time = time.time()
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
50 |
return result
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
outputs = gr.outputs.JSON()
|
69 |
-
|
70 |
-
title = "NLLB distilled 600M demo"
|
71 |
-
|
72 |
-
demo_status = "Demo is running on CPU"
|
73 |
-
description = f"Details: https://github.com/facebookresearch/fairseq/tree/nllb. {demo_status}"
|
74 |
-
examples = [
|
75 |
-
['English', 'Korean', 'Hi. nice to meet you']
|
76 |
-
]
|
77 |
-
|
78 |
-
gr.Interface(translation,
|
79 |
-
inputs,
|
80 |
-
outputs,
|
81 |
-
title=title,
|
82 |
-
description=description,
|
83 |
-
).launch()
|
84 |
-
|
85 |
-
|
|
|
1 |
import os
|
|
|
|
|
2 |
import time
|
3 |
+
import gradio as gr
|
4 |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
|
5 |
from flores200_codes import flores_codes
|
6 |
|
|
|
7 |
def load_models():
|
8 |
+
model_name_dict = {'nllb-distilled-600M': 'facebook/nllb-200-distilled-600M'}
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
model_dict = {}
|
|
|
10 |
for call_name, real_name in model_name_dict.items():
|
11 |
+
print(f'\tLoading model: {call_name}')
|
12 |
model = AutoModelForSeq2SeqLM.from_pretrained(real_name)
|
13 |
tokenizer = AutoTokenizer.from_pretrained(real_name)
|
14 |
+
model_dict[call_name + '_model'] = model
|
15 |
+
model_dict[call_name + '_tokenizer'] = tokenizer
|
|
|
16 |
return model_dict
|
17 |
|
18 |
+
global model_dict
|
19 |
+
model_dict = load_models()
|
20 |
|
21 |
+
def translate_text(source_lang, target_lang, input_text):
|
22 |
if len(model_dict) == 2:
|
23 |
model_name = 'nllb-distilled-600M'
|
|
|
24 |
start_time = time.time()
|
25 |
+
source = flores_codes.get(source_lang)
|
26 |
+
target = flores_codes.get(target_lang)
|
27 |
+
|
28 |
+
if not source or not target:
|
29 |
+
return {"error": "Invalid source or target language code"}
|
30 |
|
31 |
model = model_dict[model_name + '_model']
|
32 |
tokenizer = model_dict[model_name + '_tokenizer']
|
|
|
33 |
translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=source, tgt_lang=target)
|
34 |
+
output = translator(input_text, max_length=400)
|
|
|
35 |
end_time = time.time()
|
36 |
+
output_text = output[0]['translation_text']
|
37 |
+
result = {
|
38 |
+
'inference_time': end_time - start_time,
|
39 |
+
'source': source_lang,
|
40 |
+
'target': target_lang,
|
41 |
+
'result': output_text
|
42 |
+
}
|
43 |
return result
|
44 |
|
45 |
+
# Define Gradio Interface
|
46 |
+
iface = gr.Interface(
|
47 |
+
fn=translate_text,
|
48 |
+
inputs=[
|
49 |
+
gr.inputs.Textbox(lines=1, placeholder="Source language code", label="Source Language Code"),
|
50 |
+
gr.inputs.Textbox(lines=1, placeholder="Target language code", label="Target Language Code"),
|
51 |
+
gr.inputs.Textbox(lines=5, placeholder="Enter text to translate", label="Input Text"),
|
52 |
+
],
|
53 |
+
outputs=gr.outputs.JSON(),
|
54 |
+
title="Translation API",
|
55 |
+
description="Translation API using NLLB model."
|
56 |
+
)
|
57 |
+
|
58 |
+
# Launch as API only
|
59 |
+
iface.launch(share=True, enable_queue=True, show_error=True, server_name="0.0.0.0", server_port=7860)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|