import os import time import gradio as gr from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline from flores200_codes import flores_codes def load_models(): model_name_dict = {'nllb-distilled-1.3B': 'facebook/nllb-200-distilled-1.3B', #'nllb-distilled-600M': 'facebook/nllb-200-distilled-600M' } model_dict = {} for call_name, real_name in model_name_dict.items(): print(f'\tLoading model: {call_name}') model = AutoModelForSeq2SeqLM.from_pretrained(real_name) tokenizer = AutoTokenizer.from_pretrained(real_name) model_dict[call_name + '_model'] = model model_dict[call_name + '_tokenizer'] = tokenizer return model_dict global model_dict model_dict = load_models() def translate_text(source_lang, target_lang, input_text): if len(model_dict) == 2: model_name = 'nllb-distilled-1.3B' start_time = time.time() source = flores_codes.get(source_lang) target = flores_codes.get(target_lang) if not source or not target: return {"error": "Invalid source or target language code"} model = model_dict[model_name + '_model'] tokenizer = model_dict[model_name + '_tokenizer'] translator = pipeline('translation', model=model, tokenizer=tokenizer, src_lang=source, tgt_lang=target) output = translator(input_text, max_length=400) end_time = time.time() output_text = output[0]['translation_text'] result = { 'inference_time': end_time - start_time, 'source': source_lang, 'target': target_lang, 'result': output_text } return result # Define Gradio Interface iface = gr.Interface( fn=translate_text, inputs=[ gr.inputs.Textbox(lines=1, placeholder="Source language code", label="Source Language Code"), gr.inputs.Textbox(lines=1, placeholder="Target language code", label="Target Language Code"), gr.inputs.Textbox(lines=5, placeholder="Enter text to translate", label="Input Text"), ], outputs=gr.outputs.JSON(), title="Translation API", description="Translation API using NLLB model." ) # Launch as API only iface.launch(share=True, enable_queue=True, show_error=True, server_name="0.0.0.0", server_port=7860)